Publication:
Correlation-aware active learning for surgery video segmentation

cris.virtual.author-orcid0000-0001-6791-4753
cris.virtualsource.author-orcidfc6eef11-c073-42b9-8f59-c82468755f5c
cris.virtualsource.author-orcid261781ae-6f3c-42d9-b0bd-5190cfc67866
cris.virtualsource.author-orcid4b132b22-2fa7-45de-baed-3e055a89eae4
dc.contributor.authorWu, Fei Hugo
dc.contributor.authorMárquez Neila, Pablo
dc.contributor.authorZheng, Mingyi
dc.contributor.authorRafii-Tari, Hedyeh
dc.contributor.authorSznitman, Raphael
dc.date.accessioned2024-10-26T18:33:12Z
dc.date.available2024-10-26T18:33:12Z
dc.date.issued2024-01
dc.description.abstractSemantic segmentation is a complex task that relies heavily on large amounts of annotated image data. However, annotating such data can be time-consuming and resource-intensive, especially in the medical domain. Active Learning (AL) is a popular approach that can help to reduce this burden by iteratively selecting images for annotation to improve the model performance. In the case of video data, it is important to consider the model uncertainty and the temporal nature of the sequences when selecting images for annotation. This work proposes a novel AL strategy for surgery video segmentation, COWAL, COrrelation-aWare Active Learning. Our approach involves projecting images into a latent space that has been fine-tuned using contrastive learning and then selecting a fixed number of representative images from local clusters of video frames. We demonstrate the effectiveness of this approach on two video datasets of surgical instruments and three real-world video datasets. The datasets and code will be made publicly available upon receiving necessary approvals.
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research - AI in Medical Imaging Laboratory
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research
dc.identifier.arxiv2311.08811v2
dc.identifier.doi10.48350/199041
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/179185
dc.language.isoen
dc.publisherIEEE/CVF
dc.relation.conferenceWACV
dc.relation.organizationDCD5A442C258E17DE0405C82790C4DE2
dc.relation.organization62822F8A0D47476EBC8D9ECC5A1D9508
dc.relation.organizationEFA227295EB30F78E0405C82960C0615
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc000 - Computer science, knowledge & systems
dc.titleCorrelation-aware active learning for surgery video segmentation
dc.typeconference_item
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.conferenceDate4-8 January 2024
oaire.citation.conferencePlaceWaikoloa, Hawaii, US
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - AI in Medical Imaging Laboratory
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - AI in Medical Imaging Laboratory
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research - AI in Medical Imaging Laboratory
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-07-17 05:33:33
unibe.description.ispublishedpub
unibe.eprints.legacyId199041
unibe.refereedFALSE
unibe.subtype.conferencepaper

Files

Original bundle
Now showing 1 - 1 of 1
Name:
COWAL.pdf
Size:
8.28 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections