Publication:
Almost positive links are strongly quasipositive.

cris.virtualsource.author-orcid858ef66c-4888-46d4-9354-c6a552264153
datacite.rightsopen.access
dc.contributor.authorFeller, Peter
dc.contributor.authorLewark, Lukas Pascal
dc.contributor.authorLobb, Andrew
dc.date.accessioned2024-10-15T09:43:37Z
dc.date.available2024-10-15T09:43:37Z
dc.date.issued2023
dc.description.abstractWe prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenow's in the (strong) positive. As a second main result, we give a simple and complete characterization of link diagrams with quasipositive canonical surface (the surface produced by Seifert's algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality.
dc.description.numberOfPages30
dc.description.sponsorshipMathematisches Institut (MAI)
dc.identifier.doi10.48350/178435
dc.identifier.pmid36744241
dc.identifier.publisherDOI10.1007/s00208-021-02328-x
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/121350
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofMathematische Annalen
dc.relation.issn0025-5831
dc.relation.organizationInstitute of Mathematics
dc.subject57M25
dc.subject.ddc500 - Science::510 - Mathematics
dc.titleAlmost positive links are strongly quasipositive.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage510
oaire.citation.issue1-2
oaire.citation.startPage481
oaire.citation.volume385
oairecerif.author.affiliationMathematisches Institut (MAI)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-02-08 14:17:21
unibe.description.ispublishedpub
unibe.eprints.legacyId178435
unibe.journal.abbrevTitleMATH ANN
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s00208-021-02328-x.pdf
Size:
655.01 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections