Publication: Almost positive links are strongly quasipositive.
| cris.virtualsource.author-orcid | 858ef66c-4888-46d4-9354-c6a552264153 | |
| datacite.rights | open.access | |
| dc.contributor.author | Feller, Peter | |
| dc.contributor.author | Lewark, Lukas Pascal | |
| dc.contributor.author | Lobb, Andrew | |
| dc.date.accessioned | 2024-10-15T09:43:37Z | |
| dc.date.available | 2024-10-15T09:43:37Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | We prove that any link admitting a diagram with a single negative crossing is strongly quasipositive. This answers a question of Stoimenow's in the (strong) positive. As a second main result, we give a simple and complete characterization of link diagrams with quasipositive canonical surface (the surface produced by Seifert's algorithm). As applications, we determine which prime knots up to 13 crossings are strongly quasipositive, and we confirm the following conjecture for knots that have a canonical surface realizing their genus: a knot is strongly quasipositive if and only if the Bennequin inequality is an equality. | |
| dc.description.numberOfPages | 30 | |
| dc.description.sponsorship | Mathematisches Institut (MAI) | |
| dc.identifier.doi | 10.48350/178435 | |
| dc.identifier.pmid | 36744241 | |
| dc.identifier.publisherDOI | 10.1007/s00208-021-02328-x | |
| dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/121350 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | Mathematische Annalen | |
| dc.relation.issn | 0025-5831 | |
| dc.relation.organization | Institute of Mathematics | |
| dc.subject | 57M25 | |
| dc.subject.ddc | 500 - Science::510 - Mathematics | |
| dc.title | Almost positive links are strongly quasipositive. | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| dspace.file.type | text | |
| oaire.citation.endPage | 510 | |
| oaire.citation.issue | 1-2 | |
| oaire.citation.startPage | 481 | |
| oaire.citation.volume | 385 | |
| oairecerif.author.affiliation | Mathematisches Institut (MAI) | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.date.licenseChanged | 2023-02-08 14:17:21 | |
| unibe.description.ispublished | pub | |
| unibe.eprints.legacyId | 178435 | |
| unibe.journal.abbrevTitle | MATH ANN | |
| unibe.refereed | true | |
| unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- s00208-021-02328-x.pdf
- Size:
- 655.01 KB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- https://creativecommons.org/licenses/by/4.0
- Content:
- published