Publication:  A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data.
| cris.virtual.author-orcid | 0000-0002-6062-9076 | |
| cris.virtualsource.author-orcid | eb27a92a-8008-4040-98fb-44b2ca5f0ced | |
| cris.virtualsource.author-orcid | fe58815c-ad76-46e4-912c-5be3fa73f92a | |
| datacite.rights | open.access | |
| dc.contributor.author | Koch, Timo | |
| dc.contributor.author | Flemisch, Bernd | |
| dc.contributor.author | Helmig, Rainer | |
| dc.contributor.author | Wiest, Roland Gerhard Rudi | |
| dc.contributor.author | Obrist, Dominik | |
| dc.date.accessioned | 2024-10-28T18:07:53Z | |
| dc.date.available | 2024-10-28T18:07:53Z | |
| dc.date.issued | 2020-02 | |
| dc.description.abstract | We propose a new mathematical model to learn capillary leakage coefficients from dynamic susceptibility contrast MRI data. To this end, we derive an embedded mixed-dimension flow and transport model for brain tissue perfusion on a sub-voxel scale. This model is used to obtain the contrast agent concentration distribution in a single MRI voxel during a perfusion MRI sequence. We further present a magnetic resonance signal model for the considered sequence including a model for local susceptibility effects. This allows modeling MR signal-time curves that can be compared to clinical MRI data. The proposed model can be used as a forward model in the inverse modeling problem of inferring model parameters such as the diffusive capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach in the integrity of the blood brain barrier. Applying the model to perfusion MR data of a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall conductivity is a good indicator for characterizing activity of lesions, even if other patient-specific model parameters are not well-known. This article is protected by copyright. All rights reserved. | |
| dc.description.sponsorship | ARTORG Center - Cardiovascular Engineering (CVE) | |
| dc.description.sponsorship | Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie | |
| dc.identifier.doi | 10.7892/boris.137837 | |
| dc.identifier.pmid | 31883316 | |
| dc.identifier.publisherDOI | 10.1002/cnm.3298 | |
| dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/185278 | |
| dc.language.iso | en | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | International Journal for Numerical Methods in Biomedical Engineering | |
| dc.relation.issn | 2040-7947 | |
| dc.relation.organization | DCD5A442C011E17DE0405C82790C4DE2 | |
| dc.relation.organization | DE7C6E88B44384ADE0405C82960C5EAC | |
| dc.subject | NMR signal brain tissue perfusion embedded mixed-dimension microcirculation modeling multiple sclerosis | |
| dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
| dc.title | A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| dspace.file.type | text | |
| oaire.citation.issue | 2 | |
| oaire.citation.startPage | e3298 | |
| oaire.citation.volume | 36 | |
| oairecerif.author.affiliation | Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie | |
| oairecerif.author.affiliation | ARTORG Center - Cardiovascular Engineering (CVE) | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.date.embargoChanged | 2020-12-29 01:30:02 | |
| unibe.date.licenseChanged | 2020-01-21 12:10:41 | |
| unibe.description.ispublished | pub | |
| unibe.eprints.legacyId | 137837 | |
| unibe.journal.abbrevTitle | Int. J. Numer. Meth. Biomed. Engng. | |
| unibe.refereed | true | |
| unibe.subtype.article | journal | 
Files
Original bundle
1 - 1 of 1
- Name:
- Koch_et_al-2020-International_Journal_for_Numerical_Methods_in_Biomedical_Engineering.pdf
- Size:
- 5.8 MB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- publisher
- Content:
- accepted