Maintenance announcement: This evening (31st of October), BORIS Portal will be offline from 18:00 to 18:30 for a system update.
 

Publication:
A multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data.

cris.virtual.author-orcid0000-0002-6062-9076
cris.virtualsource.author-orcideb27a92a-8008-4040-98fb-44b2ca5f0ced
cris.virtualsource.author-orcidfe58815c-ad76-46e4-912c-5be3fa73f92a
datacite.rightsopen.access
dc.contributor.authorKoch, Timo
dc.contributor.authorFlemisch, Bernd
dc.contributor.authorHelmig, Rainer
dc.contributor.authorWiest, Roland Gerhard Rudi
dc.contributor.authorObrist, Dominik
dc.date.accessioned2024-10-28T18:07:53Z
dc.date.available2024-10-28T18:07:53Z
dc.date.issued2020-02
dc.description.abstractWe propose a new mathematical model to learn capillary leakage coefficients from dynamic susceptibility contrast MRI data. To this end, we derive an embedded mixed-dimension flow and transport model for brain tissue perfusion on a sub-voxel scale. This model is used to obtain the contrast agent concentration distribution in a single MRI voxel during a perfusion MRI sequence. We further present a magnetic resonance signal model for the considered sequence including a model for local susceptibility effects. This allows modeling MR signal-time curves that can be compared to clinical MRI data. The proposed model can be used as a forward model in the inverse modeling problem of inferring model parameters such as the diffusive capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach in the integrity of the blood brain barrier. Applying the model to perfusion MR data of a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall conductivity is a good indicator for characterizing activity of lesions, even if other patient-specific model parameters are not well-known. This article is protected by copyright. All rights reserved.
dc.description.sponsorshipARTORG Center - Cardiovascular Engineering (CVE)
dc.description.sponsorshipUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
dc.identifier.doi10.7892/boris.137837
dc.identifier.pmid31883316
dc.identifier.publisherDOI10.1002/cnm.3298
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/185278
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofInternational Journal for Numerical Methods in Biomedical Engineering
dc.relation.issn2040-7947
dc.relation.organizationDCD5A442C011E17DE0405C82790C4DE2
dc.relation.organizationDE7C6E88B44384ADE0405C82960C5EAC
dc.subjectNMR signal brain tissue perfusion embedded mixed-dimension microcirculation modeling multiple sclerosis
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleA multi-scale sub-voxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue2
oaire.citation.startPagee3298
oaire.citation.volume36
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
oairecerif.author.affiliationARTORG Center - Cardiovascular Engineering (CVE)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.embargoChanged2020-12-29 01:30:02
unibe.date.licenseChanged2020-01-21 12:10:41
unibe.description.ispublishedpub
unibe.eprints.legacyId137837
unibe.journal.abbrevTitleInt. J. Numer. Meth. Biomed. Engng.
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Koch_et_al-2020-International_Journal_for_Numerical_Methods_in_Biomedical_Engineering.pdf
Size:
5.8 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted

Collections