Publication:
Local environment in biomolecular condensates modulates enzymatic activity across length scales.

cris.virtual.author-orcid0000-0003-1704-0642
cris.virtualsource.author-orcid2bcba83b-a8eb-481f-95ed-ef928b78d48b
cris.virtualsource.author-orcid8a35f076-a27f-4456-8fd4-5a53ad54ce82
datacite.rightsopen.access
dc.contributor.authorGil-Garcia, Marcos
dc.contributor.authorBenitez Mateos, Ana Isabel
dc.contributor.authorPapp, Marcell
dc.contributor.authorStoffel, Florence
dc.contributor.authorMorelli, Chiara
dc.contributor.authorNormak, Karl
dc.contributor.authorMakasewicz, Katarzyna
dc.contributor.authorFaltova, Lenka
dc.contributor.authorParadisi, Francesca
dc.contributor.authorArosio, Paolo
dc.date.accessioned2024-10-26T17:55:03Z
dc.date.available2024-10-26T17:55:03Z
dc.date.issued2024-04-18
dc.description.abstractThe mechanisms that underlie the regulation of enzymatic reactions by biomolecular condensates and how they scale with compartment size remain poorly understood. Here we use intrinsically disordered domains as building blocks to generate programmable enzymatic condensates of NADH-oxidase (NOX) with different sizes spanning from nanometers to microns. These disordered domains, derived from three distinct RNA-binding proteins, each possessing different net charge, result in the formation of condensates characterized by a comparable high local concentration of the enzyme yet within distinct environments. We show that only condensates with the highest recruitment of substrate and cofactor exhibit an increase in enzymatic activity. Notably, we observe an enhancement in enzymatic rate across a wide range of condensate sizes, from nanometers to microns, indicating that emergent properties of condensates can arise within assemblies as small as nanometers. Furthermore, we show a larger rate enhancement in smaller condensates. Our findings demonstrate the ability of condensates to modulate enzymatic reactions by creating distinct effective solvent environments compared to the surrounding solution, with implications for the design of protein-based heterogeneous biocatalysts.
dc.description.sponsorshipDCBP Gruppe Prof. Paradisi
dc.identifier.doi10.48350/196101
dc.identifier.pmid38637545
dc.identifier.publisherDOI10.1038/s41467-024-47435-w
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/176866
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofNature communications
dc.relation.issn2041-1723
dc.relation.organizationDCD5A442C14DE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc500 - Science::540 - Chemistry
dc.subject.ddc000 - Computer science, knowledge & systems
dc.titleLocal environment in biomolecular condensates modulates enzymatic activity across length scales.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue3322
oaire.citation.volume15
oairecerif.author.affiliationDCBP Gruppe Prof. Paradisi
oairecerif.author.affiliationDCBP Gruppe Prof. Paradisi
oairecerif.author.affiliation2Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern
oairecerif.author.affiliation2Departement für Chemie, Biochemie und Pharmazie (DCBP) Universität Bern
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-04-23 16:56:26
unibe.description.ispublishedpub
unibe.eprints.legacyId196101
unibe.journal.abbrevTitleNAT COMMUN
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41467-024-47435-w.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections