Publication:
Machine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis.

cris.virtual.author-orcid0000-0003-3186-7478
cris.virtual.author-orcid0000-0002-9625-6259
cris.virtualsource.author-orcid23ffeeb4-dc17-4827-a542-a0a09e8cae90
cris.virtualsource.author-orcid0e759413-1b84-479a-86e3-790e4ba34079
cris.virtualsource.author-orcid4466e550-1009-4d15-a4d5-16aecd15ef40
cris.virtualsource.author-orcid0318e4b5-8219-4020-8e56-f9862fa7b7e4
datacite.rightsopen.access
dc.contributor.authorAkshay, Akshay
dc.contributor.authorKatoch, Mitali
dc.contributor.authorShekarchizadeh, Navid
dc.contributor.authorAbedi, Masoud
dc.contributor.authorSharma, Ankush
dc.contributor.authorBurkhard, Fiona Christine
dc.contributor.authorAdam, Rosalyn M
dc.contributor.authorMonastyrskaya-Stäuber, Katia
dc.contributor.authorHashemi Gheinani, Ali
dc.date.accessioned2024-10-26T16:58:54Z
dc.date.available2024-10-26T16:58:54Z
dc.date.issued2024-01-02
dc.description.abstractBACKGROUND Machine learning (ML) has emerged as a vital asset for researchers to analyze and extract valuable information from complex datasets. However, developing an effective and robust ML pipeline can present a real challenge, demanding considerable time and effort, thereby impeding research progress. Existing tools in this landscape require a profound understanding of ML principles and programming skills. Furthermore, users are required to engage in the comprehensive configuration of their ML pipeline to obtain optimal performance. RESULTS To address these challenges, we have developed a novel tool called Machine Learning Made Easy (MLme) that streamlines the use of ML in research, specifically focusing on classification problems at present. By integrating 4 essential functionalities-namely, Data Exploration, AutoML, CustomML, and Visualization-MLme fulfills the diverse requirements of researchers while eliminating the need for extensive coding efforts. To demonstrate the applicability of MLme, we conducted rigorous testing on 6 distinct datasets, each presenting unique characteristics and challenges. Our results consistently showed promising performance across different datasets, reaffirming the versatility and effectiveness of the tool. Additionally, by utilizing MLme's feature selection functionality, we successfully identified significant markers for CD8+ naive (BACH2), CD16+ (CD16), and CD14+ (VCAN) cell populations. CONCLUSION MLme serves as a valuable resource for leveraging ML to facilitate insightful data analysis and enhance research outcomes, while alleviating concerns related to complex coding scripts. The source code and a detailed tutorial for MLme are available at https://github.com/FunctionalUrology/MLme.
dc.description.numberOfPages9
dc.description.sponsorshipDepartment for BioMedical Research, Forschungsgruppe Urologie
dc.description.sponsorshipUniversitätsklinik für Urologie
dc.identifier.doi10.48350/191551
dc.identifier.pmid38206587
dc.identifier.publisherDOI10.1093/gigascience/giad111
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/173332
dc.language.isoen
dc.publisherOxford University Press
dc.relation.ispartofGigaScience
dc.relation.issn2047-217X
dc.relation.organizationDCD5A442BE73E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C238E17DE0405C82790C4DE2
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.subjectAutoML classification problems data analysis machine learning visualization
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleMachine Learning Made Easy (MLme): a comprehensive toolkit for machine learning-driven data analysis.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage9
oaire.citation.startPage1
oaire.citation.volume13
oairecerif.author.affiliationDepartment for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliationUniversitätsklinik für Urologie
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
oairecerif.author.affiliation2Department for BioMedical Research, Forschungsgruppe Urologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-01-15 10:10:37
unibe.description.ispublishedpub
unibe.eprints.legacyId191551
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
giad111.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections