Publication:
CryoVesNet: A dedicated framework for synaptic vesicle segmentation in cryo-electron tomograms.

cris.virtual.author-orcid0000-0002-5815-5537
cris.virtual.author-orcid0000-0001-7725-5579
cris.virtualsource.author-orcidb5edf965-7659-43a8-91da-0030fe1d201f
cris.virtualsource.author-orcid89d69b78-f84d-43d1-9c75-2158c1e9c224
cris.virtualsource.author-orcid3dba2024-41d1-4abe-8b06-eade8a7fb48d
cris.virtualsource.author-orcidebf0638e-8d6d-42be-b450-ec76ed650ae3
cris.virtualsource.author-orcide050e437-7048-4ed7-8f07-6eaad53734c2
datacite.rightsopen.access
dc.contributor.authorKhosrozadeh, Amin
dc.contributor.authorSeeger, Raphaela
dc.contributor.authorWitz, Guillaume Robert
dc.contributor.authorRadecke, Julika
dc.contributor.authorSørensen, Jakob B
dc.contributor.authorZuber, Benoît
dc.date.accessioned2024-11-21T14:04:25Z
dc.date.available2024-11-21T14:04:25Z
dc.date.issued2025-01-06
dc.description.abstractCryo-electron tomography (cryo-ET) has the potential to reveal cell structure down to atomic resolution. Nevertheless, cellular cryo-ET data is highly complex, requiring image segmentation for visualization and quantification of subcellular structures. Due to noise and anisotropic resolution in cryo-ET data, automatic segmentation based on classical computer vision approaches usually does not perform satisfactorily. Communication between neurons relies on neurotransmitter-filled synaptic vesicle (SV) exocytosis. Cryo-ET study of the spatial organization of SVs and their interconnections allows a better understanding of the mechanisms of exocytosis regulation. Accurate SV segmentation is a prerequisite to obtaining a faithful connectivity representation. Hundreds of SVs are present in a synapse, and their manual segmentation is a bottleneck. We addressed this by designing a workflow consisting of a convolutional network followed by post-processing steps. Alongside, we provide an interactive tool for accurately segmenting spherical vesicles. Our pipeline can in principle segment spherical vesicles in any cell type as well as extracellular and in vitro spherical vesicles.
dc.description.sponsorshipGraduate School for Cellular and Biomedical Sciences (GCB)
dc.description.sponsorshipMicroscopy Imaging Center (MIC)
dc.description.sponsorshipInstitute of Anatomy
dc.description.sponsorshipData Science Lab (DSL) Universität Bern
dc.identifier.doi10.48620/76484
dc.identifier.pmid39446113
dc.identifier.publisherDOI10.1083/jcb.202402169
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/189476
dc.language.isoen
dc.publisherRockefeller University Press
dc.relation.ispartofJournal of Cell Biology
dc.relation.issn0021-9525
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleCryoVesNet: A dedicated framework for synaptic vesicle segmentation in cryo-electron tomograms.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.volume224
oairecerif.author.affiliationInstitute of Anatomy
oairecerif.author.affiliationInstitute of Anatomy
oairecerif.author.affiliationData Science Lab (DSL) Universität Bern
oairecerif.author.affiliationInstitute of Anatomy
oairecerif.author.affiliation2Graduate School for Cellular and Biomedical Sciences (GCB)
oairecerif.author.affiliation2Graduate School for Cellular and Biomedical Sciences (GCB)
unibe.additional.sponsorshipGraduate School for Cellular and Biomedical Sciences (GCB)
unibe.additional.sponsorshipMicroscopy Imaging Center (MIC)
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.rolecorresponding author
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
jcb_202402169.pdf
Size:
7.54 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-sa/4.0
Content:
published

Collections