Publication:
Analgesia for the Bayesian Brain: How Predictive Coding Offers Insights Into the Subjectivity of Pain.

cris.virtualsource.author-orcid3136d3b4-1b76-496a-8ef5-d5aa943407c1
cris.virtualsource.author-orcid8569c26a-9842-4e8a-937f-ad8ef87029fb
datacite.rightsopen.access
dc.contributor.authorLersch, Friedrich E
dc.contributor.authorFrickmann, Fabienne Conny Sara
dc.contributor.authorUrman, Richard D
dc.contributor.authorBurgermeister, Gabriel
dc.contributor.authorSiercks, Kaya
dc.contributor.authorLuedi, Markus M
dc.contributor.authorStraumann, Sven
dc.date.accessioned2024-10-25T16:53:17Z
dc.date.available2024-10-25T16:53:17Z
dc.date.issued2023-11
dc.description.abstractPURPOSE OF REVIEW In order to better treat pain, we must understand its architecture and pathways. Many modulatory approaches of pain management strategies are only poorly understood. This review aims to provide a theoretical framework of pain perception and modulation in order to assist in clinical understanding and research of analgesia and anesthesia. RECENT FINDINGS Limitations of traditional models for pain have driven the application of new data analysis models. The Bayesian principle of predictive coding has found increasing application in neuroscientific research, providing a promising theoretical background for the principles of consciousness and perception. It can be applied to the subjective perception of pain. Pain perception can be viewed as a continuous hierarchical process of bottom-up sensory inputs colliding with top-down modulations and prior experiences, involving multiple cortical and subcortical hubs of the pain matrix. Predictive coding provides a mathematical model for this interplay.
dc.description.numberOfPages8
dc.description.sponsorshipUniversitätsklinik für Anästhesiologie und Schmerztherapie
dc.identifier.doi10.48350/184607
dc.identifier.pmid37421540
dc.identifier.publisherDOI10.1007/s11916-023-01122-5
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/168572
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofCurrent pain and headache reports
dc.relation.issn1534-3081
dc.relation.organization318E781798EC6684E053980C5C821B39
dc.relation.organizationDCD5A442BADCE17DE0405C82790C4DE2
dc.subjectActive inference Analgesia Anesthesia Bayes’ theorem Markov blanket Pain Predictive coding
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleAnalgesia for the Bayesian Brain: How Predictive Coding Offers Insights Into the Subjectivity of Pain.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage638
oaire.citation.issue11
oaire.citation.startPage631
oaire.citation.volume27
oairecerif.author.affiliationUniversitätsklinik für Anästhesiologie und Schmerztherapie
oairecerif.author.affiliationUniversitätsklinik für Anästhesiologie und Schmerztherapie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-07-10 09:09:57
unibe.description.ispublishedpub
unibe.eprints.legacyId184607
unibe.refereedtrue
unibe.subtype.articlereview

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s11916-023-01122-5.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections