Publication:
NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics.

cris.virtualsource.author-orcida76269c9-bcb2-481d-8992-5af3e269ed4d
cris.virtualsource.author-orcid906070e9-5f44-4fcf-b26c-5e36f8e66f58
datacite.rightsopen.access
dc.contributor.authorAbayazeed, Aly H
dc.contributor.authorAbbassy, Ahmed
dc.contributor.authorMüller, Michael
dc.contributor.authorHill, Michael
dc.contributor.authorQayati, Mohamed
dc.contributor.authorMohamed, Shady
dc.contributor.authorMekhaimar, Mahmoud
dc.contributor.authorRaymond, Catalina
dc.contributor.authorDubey, Prachi
dc.contributor.authorNael, Kambiz
dc.contributor.authorRohatgi, Saurabh
dc.contributor.authorKapare, Vaishali
dc.contributor.authorKulkarni, Ashwini
dc.contributor.authorShiang, Tina
dc.contributor.authorKumar, Atul
dc.contributor.authorAndratschke, Nicolaus
dc.contributor.authorWillmann, Jonas
dc.contributor.authorBrawanski, Alexander
dc.contributor.authorDe Jesus, Reordan
dc.contributor.authorTuna, Ibrahim
dc.contributor.authorFung, Steve H
dc.contributor.authorLandolfi, Joseph C
dc.contributor.authorEllingson, Benjamin M
dc.contributor.authorReyes, Mauricio
dc.date.accessioned2024-10-15T09:36:11Z
dc.date.available2024-10-15T09:36:11Z
dc.date.issued2023
dc.description.abstractBACKGROUND Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. METHODS A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. RESULTS IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. CONCLUSION NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others.
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research - Medical Image Analysis
dc.identifier.doi10.48350/177813
dc.identifier.pmid36685009
dc.identifier.publisherDOI10.1093/noajnl/vdac184
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/120864
dc.language.isoen
dc.publisherOxford University Press
dc.relation.ispartofNeuro-oncology advances
dc.relation.issn2632-2498
dc.relation.organizationC4C9B5A4EB5044C1856BB32B0E8EF1F9
dc.relation.organizationDCD5A442C258E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BAD6E17DE0405C82790C4DE2
dc.subjectRANO artificial intelligence glioma machine learning segmentation
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleNS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPagevdac184
oaire.citation.volume5
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - Medical Image Analysis
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research - Medical Image Analysis
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliation2Universitätsklinik für Radio-Onkologie
oairecerif.author.affiliation3ARTORG Center for Biomedical Engineering Research
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-01-26 14:14:52
unibe.description.ispublishedpub
unibe.eprints.legacyId177813
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
vdac184.pdf
Size:
681.4 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc/4.0
Content:
published

Collections