Publication:
Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data

cris.virtual.author-orcid0000-0002-8069-9450
cris.virtual.author-orcid0000-0002-7641-8898
cris.virtual.author-orcid0000-0001-6990-4188
cris.virtualsource.author-orcid41aa2eb9-5e33-44f4-bffd-9aa4ede42580
cris.virtualsource.author-orcidddfceb66-c45c-4409-b433-26169e9148ea
cris.virtualsource.author-orcid4c6f5043-5c32-495b-af5f-a5eea062cbba
cris.virtualsource.author-orcid6f872f75-1a08-4f52-a592-c8de7980ed3b
cris.virtualsource.author-orcidcf2eb18b-6bab-4132-bb30-1772ebf32ca4
cris.virtualsource.author-orcide63d6103-fccc-4787-8d45-86d3201ccbca
cris.virtualsource.author-orcidb8f06356-dafd-4fd4-99a0-17ec5d579bc0
cris.virtualsource.author-orcida4ef8ac2-dd6c-4dc5-809a-55595b28c432
datacite.rightsopen.access
dc.contributor.authorNef, Tobias
dc.contributor.authorUrwyler-Harischandra, Prabitha
dc.contributor.authorBüchler, Marcel
dc.contributor.authorTarnanas, Ioannis
dc.contributor.authorStucki, Reto
dc.contributor.authorCazzoli, Dario
dc.contributor.authorMüri, René Martin
dc.contributor.authorMosimann, Urs Peter
dc.date.accessioned2024-10-23T18:40:05Z
dc.date.available2024-10-23T18:40:05Z
dc.date.issued2015-05-21
dc.description.abstractSmart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.
dc.description.noteThis article belongs to the Special Issue Sensors and Smart Cities
dc.description.numberOfPages16
dc.description.sponsorshipARTORG - Gerontechnology and Rehabilitation
dc.description.sponsorshipAlumni der Universität Bern
dc.description.sponsorshipDepartement Klinische Forschung, Forschungsgruppe Perzeption und Okulomotorik
dc.description.sponsorshipUniversitätsklinik für Alterspsychiatrie und Psychotherapie (APP)
dc.identifier.doi10.7892/boris.70232
dc.identifier.pmid26007727
dc.identifier.publisherDOI10.3390/s150511725
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/134168
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofSensors
dc.relation.issn1424-8220
dc.relation.organizationDCD5A442C19EE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C49BE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C069E17DE0405C82790C4DE2
dc.subjectactivities of daily living
dc.subjectambient assisted living
dc.subjectdata classification
dc.subjectdata mining
dc.subjecthealthcare technology
dc.subjectsmart cities
dc.subjectsmart homes
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleEvaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage11740
oaire.citation.issue5
oaire.citation.startPage11725
oaire.citation.volume15
oairecerif.author.affiliationARTORG - Gerontechnology and Rehabilitation
oairecerif.author.affiliationARTORG - Gerontechnology and Rehabilitation
oairecerif.author.affiliationAlumni der Universität Bern
oairecerif.author.affiliationARTORG - Gerontechnology and Rehabilitation
oairecerif.author.affiliationARTORG - Gerontechnology and Rehabilitation
oairecerif.author.affiliationARTORG - Gerontechnology and Rehabilitation
oairecerif.author.affiliationDepartement Klinische Forschung, Forschungsgruppe Perzeption und Okulomotorik
oairecerif.author.affiliationUniversitätsklinik für Alterspsychiatrie und Psychotherapie (APP)
oairecerif.author.affiliation2Universitätsklinik für Alterspsychiatrie und Psychotherapie (APP)
oairecerif.author.affiliation2Universitätsklinik für Alterspsychiatrie und Psychotherapie (APP)
oairecerif.author.affiliation2ARTORG - Gerontechnology and Rehabilitation
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId70232
unibe.journal.abbrevTitleSENSORS-BASEL
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
sensors-15-11725.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections