Publication:
SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes

cris.virtual.author-orcid0000-0002-0231-9950
cris.virtual.author-orcid0000-0001-6791-4753
cris.virtualsource.author-orcid4ec8eef1-ae8c-417c-9a2b-19d5e478da5e
cris.virtualsource.author-orcid4b132b22-2fa7-45de-baed-3e055a89eae4
cris.virtualsource.author-orcid261781ae-6f3c-42d9-b0bd-5190cfc67866
datacite.rightsrestricted
dc.contributor.authorDoorenbos, Lars Jelte
dc.contributor.authorSznitman, Raphael
dc.contributor.authorMárquez Neila, Pablo
dc.date.accessioned2024-10-09T17:21:22Z
dc.date.available2024-10-09T17:21:22Z
dc.date.issued2022
dc.description.abstractWe present an extension of the self-supervised outlier detection (SSD) framework to the three-dimensional case. We first apply contrastive learning on a network using a general dataset of two-dimensional slices randomly sampled from all the available training data. This network serves as a latent embedding encoder of the input images. We model the in-distribution latent density as a multivariate Gaussian, fitted to the embeddings of the training slices. At test time, each test sample is scored by summing the Mahalanobis distances from all its slices to the means of the learned Gaussians. While mainly meant as a sample-level method, this approach additionally enables coarse localization, scoring each voxel by the minimum Mahalanobis distance among the slices that contain it. On the sample-level task of the 2021 MICCAI Medical Out-of-Distribution Analysis Challenge, our method ranked second on the challenging abdominal dataset, and fourth overall. Moreover, we show that with pretrained features and the right choice of architecture, a further boost in performance can be gained.
dc.description.numberOfPages8
dc.description.sponsorshipARTORG Center - Artificial Intelligence in Medical Image Computing
dc.identifier.doi10.48350/168297
dc.identifier.publisherDOI10.1007/978-3-030-97281-3_17
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/69506
dc.language.isoen
dc.publisherSpringer
dc.publisher.placeCham
dc.relation.conferenceMICCAI 2021: Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis. Proceedings
dc.relation.isbn978-3-030-97281-3
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.relation.organization62822F8A0D47476EBC8D9ECC5A1D9508
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.titleSS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes
dc.typeconference_item
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.conferenceDateSeptember 27th to October 1st 2021
oaire.citation.conferencePlaceStrasbourg, France
oaire.citation.endPage118
oaire.citation.startPage111
oaire.citation.volume13166
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.identifier.urlhttps://miccai2021.org/en/
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-04-14 08:02:22
unibe.description.ispublishedpub
unibe.eprints.legacyId168297
unibe.refereedtrue
unibe.relation.institutionSpringer
unibe.subtype.conferencepaper

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Doorenbos2022_Chapter_SS3DUnsupervisedOut-of-Distrib.pdf
Size:
883.6 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections