Publication:
Uncertainty-modulated prediction errors in cortical microcircuits.

cris.virtual.author-orcid0000-0003-3622-0497
cris.virtualsource.author-orcid8ca19d6b-00dd-42c9-9d67-815103b34e19
cris.virtualsource.author-orcide03b8746-3773-4531-81a2-a636fff8a67e
cris.virtualsource.author-orcid244af0d0-0f63-4051-9c42-b98b1cef4b2a
cris.virtualsource.author-orcid8365eb36-c1de-4f83-86b5-ce23ba0e33e0
datacite.rightsopen.access
dc.contributor.authorWilmes, Katharina Anna
dc.contributor.authorPetrovici, Mihai A
dc.contributor.authorSachidhanandam, Shankar
dc.contributor.authorSenn, Walter
dc.date.accessioned2025-06-13T09:52:38Z
dc.date.available2025-06-13T09:52:38Z
dc.date.issued2025-06-05
dc.description.abstractUnderstanding the variability of the environment is essential to function in everyday life. The brain must hence take uncertainty into account when updating its internal model of the world. The basis for updating the model are prediction errors that arise from a difference between the current model and new sensory experiences. Although prediction error neurons have been identified in layer 2/3 of diverse brain areas, how uncertainty modulates these errors and hence learning is, however, unclear. Here, we use a normative approach to derive how uncertainty should modulate prediction errors and postulate that layer 2/3 neurons represent uncertainty-modulated prediction errors (UPE). We further hypothesise that the layer 2/3 circuit calculates the UPE through the subtractive and divisive inhibition by different inhibitory cell types. By implementing the calculation of UPEs in a microcircuit model, we show that different cell types can compute the means and variances of the stimulus distribution. With local activity-dependent plasticity rules, these computations can be learned context-dependently, and allow the prediction of upcoming stimuli and their distribution. Finally, the mechanism enables an organism to optimise its learning strategy via adaptive learning rates.
dc.description.sponsorshipInstitute of Physiology
dc.description.sponsorshipInstitut für Physiologie - Neuro-inspired Theory
dc.description.sponsorshipInstitut für Physiologie - Computational Neuroscience Group
dc.identifier.doi10.48620/88472
dc.identifier.pmid40471208
dc.identifier.publisherDOI10.7554/eLife.95127
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/211827
dc.language.isoen
dc.publishereLife Sciences Publications
dc.relation.ispartofeLife
dc.relation.issn2050-084X
dc.subjectcells
dc.subjectcircuits
dc.subjectcortex
dc.subjectneuroscience
dc.subjectnone
dc.titleUncertainty-modulated prediction errors in cortical microcircuits.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.volume13
oairecerif.author.affiliationInstitute of Physiology
oairecerif.author.affiliationInstitut für Physiologie - Neuro-inspired Theory
oairecerif.author.affiliationInstitute of Physiology
oairecerif.author.affiliationInstitute of Physiology
oairecerif.author.affiliation2Institut für Physiologie - Computational Neuroscience Group
unibe.additional.sponsorshipInstitut für Physiologie - Computational Neuroscience Group
unibe.contributor.orcid0000-0003-3622-0497
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
elife-95127-v1.pdf
Size:
3.37 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections