Publication:
Confidence and second-order errors in cortical circuits.

cris.virtual.author-orcid0000-0003-3622-0497
cris.virtualsource.author-orcid672d3ec4-bfcc-44f8-9e56-87ab06a8b034
cris.virtualsource.author-orcide03b8746-3773-4531-81a2-a636fff8a67e
cris.virtualsource.author-orcid8365eb36-c1de-4f83-86b5-ce23ba0e33e0
cris.virtualsource.author-orcid8ca19d6b-00dd-42c9-9d67-815103b34e19
datacite.rightsopen.access
dc.contributor.authorGranier, Arno
dc.contributor.authorPetrovici, Mihai A
dc.contributor.authorSenn, Walter
dc.contributor.authorWilmes, Katharina A
dc.date.accessioned2024-10-24T10:11:03Z
dc.date.available2024-10-24T10:11:03Z
dc.date.issued2024-09
dc.description.abstractMinimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, action, and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process. Here, we formally derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams but also jointly project their confidence (inverse expected uncertainty) in their predictions. In the resulting neuronal dynamics, the integration of bottom-up and top-down cortical streams is dynamically modulated based on confidence in accordance with the Bayesian principle. Moreover, the theory predicts the existence of cortical second-order errors, comparing confidence and actual performance. These errors are propagated through the cortical hierarchy alongside classical prediction errors and are used to learn the weights of synapses responsible for formulating confidence. We propose a detailed mapping of the theory to cortical circuitry, discuss entailed functional interpretations, and provide potential directions for experimental work.
dc.description.numberOfPages10
dc.description.sponsorshipGraduate School for Cellular and Biomedical Sciences (GCB)
dc.description.sponsorshipInstitut für Physiologie - Neuro-inspired Theory
dc.description.sponsorshipInstitute of Physiology
dc.identifier.doi10.48620/43087
dc.identifier.pmid39346625
dc.identifier.publisherDOI10.1093/pnasnexus/pgae404
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/125218
dc.language.isoen
dc.publisherOxford University Press
dc.relation.ispartofPNAS Nexus
dc.relation.issn2752-6542
dc.subjectcortical computation
dc.subjectenergy-based models
dc.subjectpredictive coding
dc.subjectuncertainty
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleConfidence and second-order errors in cortical circuits.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue9
oaire.citation.volume3
oairecerif.author.affiliationInstitut für Physiologie - Neuro-inspired Theory
oairecerif.author.affiliationInstitute of Physiology
oairecerif.author.affiliationInstitute of Physiology
oairecerif.author.affiliation2Institut für Physiologie - Computational Neuroscience Group
unibe.additional.sponsorshipGraduate School for Cellular and Biomedical Sciences (GCB)
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
pgae404.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections