Experimental and Theoretical Electron Density Analysis of Copper Pyrazine Nitrate Quasi-Low-Dimensional Quantum Magnets
Options
BORIS DOI
Publisher DOI
PubMed ID
26811927
Description
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
Date of Publication
2016
Publication Type
Article
Subject(s)
500 - Science::570 - Life sciences; biology
500 - Science::540 - Chemistry
Language(s)
en
Contributor(s)
Barton, Alyssa M. | |
Brambleby, Jamie | |
Blackmore, William J. A. | |
Goddard, Paul A. | |
Xiao, Fan | |
Williams, Robert C. | |
Lancaster, Tom | |
Pratt, Francis L. | |
Blundell, Stephen J. | |
Singleton, John | |
Manson, Jamie L. |
Additional Credits
Departement für Chemie und Biochemie (DCB)
Series
Journal of the American Chemical Society
Publisher
American Chemical Society
ISSN
0002-7863
Access(Rights)
restricted