Publication:
Predictive olfactory learning in Drosophila

cris.virtual.author-orcid0000-0003-3622-0497
cris.virtualsource.author-orcid7b20db92-6062-4f2f-93eb-74fcbb80eedd
cris.virtualsource.author-orcide03b8746-3773-4531-81a2-a636fff8a67e
cris.virtualsource.author-orcid8365eb36-c1de-4f83-86b5-ce23ba0e33e0
dc.contributor.authorZhao, Chang
dc.contributor.authorWidmer, Yves F.
dc.contributor.authorDiegelmann, Sören
dc.contributor.authorPetrovici, Mihai Alexandru
dc.contributor.authorSprecher, Simon G.
dc.contributor.authorSenn, Walter
dc.date.accessioned2024-10-05T12:24:38Z
dc.date.available2024-10-05T12:24:38Z
dc.date.issued2021-03-24
dc.description.abstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.
dc.description.sponsorshipInstitut für Physiologie
dc.identifier.doi10.48350/159862
dc.identifier.pmid33762640
dc.identifier.publisherDOI10.1038/s41598-021-85841-y
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/57314
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.issn2045-2322
dc.relation.organizationDCD5A442BCD8E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titlePredictive olfactory learning in Drosophila
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage6795
oaire.citation.volume11
oairecerif.author.affiliationInstitut für Physiologie
oairecerif.author.affiliationInstitut für Physiologie
oairecerif.author.affiliationInstitut für Physiologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-10-21 09:03:12
unibe.description.ispublishedpub
unibe.eprints.legacyId159862
unibe.journal.abbrevTitleSci Rep
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Zhao2021Predictive.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections