Publication:
Synthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula

cris.virtual.author-orcid0000-0002-2603-1169
cris.virtualsource.author-orcid42d6d8f6-192d-401b-b452-298d42a25bf0
dc.contributor.authorMousis, O.
dc.contributor.authorRonnet, T.
dc.contributor.authorLunine, J. I.
dc.contributor.authorMaggiolo, R.
dc.contributor.authorWurz, Peter
dc.contributor.authorDanger, G.
dc.contributor.authorBouquet, A.
dc.date.accessioned2024-10-25T14:54:01Z
dc.date.available2024-10-25T14:54:01Z
dc.date.issued2018
dc.description.abstractMolecular oxygen has been detected in the coma of comet 67P/Churyumov–Gerasimenko with a mean abundance of 3.80±0.85% by the ROSINA mass spectrometer on board the Rosetta spacecraft. To account for the presence of this species in comet 67P/Churyumov–Gerasimenko, it has been shown that the radiolysis of ice grain precursors of comets is a viable mechanism in low-density environments, such as molecular clouds. Here, we investigate the alternative possibility that the icy grains present in the midplane of the protosolar nebula were irradiated during their vertical transport between the midplane and the upper layers over a large number of cycles, as a result of turbulent mixing. Consequently, these grains spent a non-negligible fraction of their lifetime in the disk’s upper regions, where the irradiation by cosmic rays was strong. To do so, we used a coupled disk-transportirradiation model to calculate the time evolution of the molecular oxygen abundance radiolytically produced in ice grains. Our computations show that, even if a significant fraction of the icy particles has followed a back and forth cycle toward the upper layers of the disk over tens of millions of years, a timespan far exceeding the formation timescale of comet 67P/Churyumov–Gerasimenko, the amount of produced molecular oxygen is at least two orders of magnitude lower than the Rosetta observations. We conclude that the most likely scenario remains the formation of molecular oxygen in low-density environments, such as the presolar cloud, prior to the genesis of the protosolar nebula.
dc.description.sponsorshipPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
dc.identifier.doi10.7892/boris.116944
dc.identifier.publisherDOI10.3847/1538-4357/aab6b9
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/162277
dc.language.isoen
dc.publisherInstitute of Physics Publishing IOP
dc.relation.ispartofAstrophysical journal
dc.relation.issn0004-637X
dc.relation.organizationDCD5A442BE9BE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::520 - Astronomy
dc.subject.ddc600 - Technology::620 - Engineering
dc.subject.ddc500 - Science::530 - Physics
dc.titleSynthesis of Molecular Oxygen via Irradiation of Ice Grains in the Protosolar Nebula
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage66
oaire.citation.volume858
oairecerif.author.affiliationPhysikalisches Institut, Weltraumforschung und Planetologie (WP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-23 12:54:00
unibe.description.ispublishedpub
unibe.eprints.legacyId116944
unibe.journal.abbrevTitleASTROPHYS J
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
pdf.pdf
Size:
584.99 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections