Publication:
Digital image analysis and artificial intelligence in pathology diagnostics-the Swiss view.

cris.virtual.author-orcid0000-0001-6741-3000
cris.virtualsource.author-orcid6672b641-a951-4a13-bb73-ea905bae91f2
cris.virtualsource.author-orcid6c84719c-dd7a-4678-aa8a-1b4f99d3856a
dc.contributor.authorBerezowska, Sabina
dc.contributor.authorCathomas, Gieri Risch
dc.contributor.authorGrobholz, Rainer
dc.contributor.authorHenkel, Maurice
dc.contributor.authorJochum, Wolfram
dc.contributor.authorKoelzer, Viktor H
dc.contributor.authorKreutzfeldt, Mario
dc.contributor.authorMertz, Kirsten D
dc.contributor.authorRössle, Matthias
dc.contributor.authorSoldini, Davide
dc.contributor.authorZlobec, Inti
dc.contributor.authorJanowczyk, Andrew
dc.date.accessioned2024-10-25T18:35:27Z
dc.date.available2024-10-25T18:35:27Z
dc.date.issued2023-12
dc.description.abstractDigital pathology (DP) is increasingly entering routine clinical pathology diagnostics. As digitization of the routine caseload advances, implementation of digital image analysis algorithms and artificial intelligence tools becomes not only attainable, but also desirable in daily sign out. The Swiss Digital Pathology Consortium (SDiPath) has initiated a Delphi process to generate best-practice recommendations for various phases of the process of digitization in pathology for the local Swiss environment, encompassing the following four topics: i) scanners, quality assurance, and validation of scans; ii) integration of scanners and systems into the pathology laboratory information system; iii) the digital workflow; and iv) digital image analysis (DIA)/artificial intelligence (AI). The current article focuses on the DIA-/AI-related recommendations generated and agreed upon by the working group and further verified by the Delphi process among the members of SDiPath. Importantly, they include the view and the currently perceived needs of practicing pathologists from multiple academic and cantonal hospitals as well as private practices.
dc.description.numberOfPages3
dc.description.sponsorshipInstitut für Gewebemedizin und Pathologie
dc.description.sponsorshipInstitut für Gewebemedizin und Pathologie - Klinische Pathologie
dc.identifier.doi10.48350/189251
dc.identifier.pmid37987817
dc.identifier.publisherDOI10.1007/s00292-023-01262-w
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/171618
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofPathologie
dc.relation.issn2731-7196
dc.relation.organizationDCD5A442BE2AE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BF89E17DE0405C82790C4DE2
dc.subjectArtificial intelligence Delphi process Digitalization Image analysis Pathology
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleDigital image analysis and artificial intelligence in pathology diagnostics-the Swiss view.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage224
oaire.citation.issueSuppl 3
oaire.citation.startPage222
oaire.citation.volume44
oairecerif.author.affiliationInstitut für Gewebemedizin und Pathologie - Klinische Pathologie
oairecerif.author.affiliationInstitut für Gewebemedizin und Pathologie
oairecerif.author.affiliation2Institut für Gewebemedizin und Pathologie - Digitale Pathologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-11-22 11:18:58
unibe.description.ispublishedpub
unibe.eprints.legacyId189251
unibe.refereedTRUE
unibe.subtype.articlereview

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s00292-023-01262-w.pdf
Size:
244.66 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections