Publication: The dark side of the force: multiplicity issues in network meta-analysis and how to address them.
| cris.virtual.author-orcid | 0000-0002-0955-7572 | |
| cris.virtualsource.author-orcid | e1dba832-8d83-4311-9d71-ba02eaa0afba | |
| datacite.rights | open.access | |
| dc.contributor.author | Efthimiou, Orestis | |
| dc.contributor.author | White, Ian R | |
| dc.date.accessioned | 2024-10-28T17:16:30Z | |
| dc.date.available | 2024-10-28T17:16:30Z | |
| dc.date.issued | 2020-01 | |
| dc.description.abstract | Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, e.g. when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we present theoretical arguments as well as results from simulations to illustrate how such practices might lead to exaggerated and overconfident statements regarding relative treatment effects. We discuss how the issue can be addressed via multi-level Bayesian modeling, where treatment effects are modeled exchangeably, and hence estimates are shrunk away from large values. We present a set of alternative models for network meta-analysis, and we show in simulations that in several scenarios, such models perform better than the usual network meta-analysis model. | |
| dc.description.numberOfPages | 36 | |
| dc.description.sponsorship | Institut für Sozial- und Präventivmedizin (ISPM) | |
| dc.identifier.doi | 10.7892/boris.133130 | |
| dc.identifier.pmid | 31476256 | |
| dc.identifier.publisherDOI | 10.1002/jrsm.1377 | |
| dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/182048 | |
| dc.language.iso | en | |
| dc.publisher | Wiley | |
| dc.relation.ispartof | Research Synthesis Methods | |
| dc.relation.issn | 1759-2879 | |
| dc.relation.organization | Institute of Social and Preventive Medicine | |
| dc.subject.ddc | 600 - Technology::610 - Medicine & health | |
| dc.subject.ddc | 300 - Social sciences, sociology & anthropology::360 - Social problems & social services | |
| dc.title | The dark side of the force: multiplicity issues in network meta-analysis and how to address them. | |
| dc.type | article | |
| dspace.entity.type | Publication | |
| dspace.file.type | text | |
| oaire.citation.endPage | 122 | |
| oaire.citation.issue | 1 | |
| oaire.citation.startPage | 105 | |
| oaire.citation.volume | 11 | |
| oairecerif.author.affiliation | Institut für Sozial- und Präventivmedizin (ISPM) | |
| unibe.contributor.role | creator | |
| unibe.contributor.role | creator | |
| unibe.date.embargoChanged | 2020-09-03 00:30:03 | |
| unibe.date.licenseChanged | 2020-11-05 23:21:39 | |
| unibe.description.ispublished | pub | |
| unibe.eprints.legacyId | 133130 | |
| unibe.journal.abbrevTitle | RES SYNTH METHODS | |
| unibe.refereed | true | |
| unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- Efthimiou ResSynthMethods 2020.pdf
- Size:
- 586.54 KB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- License:
- https://creativecommons.org/licenses/by/4.0
- Content:
- published