Publication:
The dark side of the force: multiplicity issues in network meta-analysis and how to address them.

cris.virtual.author-orcid0000-0002-0955-7572
cris.virtualsource.author-orcide1dba832-8d83-4311-9d71-ba02eaa0afba
datacite.rightsopen.access
dc.contributor.authorEfthimiou, Orestis
dc.contributor.authorWhite, Ian R
dc.date.accessioned2024-10-28T17:16:30Z
dc.date.available2024-10-28T17:16:30Z
dc.date.issued2020-01
dc.description.abstractStandard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, e.g. when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we present theoretical arguments as well as results from simulations to illustrate how such practices might lead to exaggerated and overconfident statements regarding relative treatment effects. We discuss how the issue can be addressed via multi-level Bayesian modeling, where treatment effects are modeled exchangeably, and hence estimates are shrunk away from large values. We present a set of alternative models for network meta-analysis, and we show in simulations that in several scenarios, such models perform better than the usual network meta-analysis model.
dc.description.numberOfPages36
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM)
dc.identifier.doi10.7892/boris.133130
dc.identifier.pmid31476256
dc.identifier.publisherDOI10.1002/jrsm.1377
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/182048
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofResearch Synthesis Methods
dc.relation.issn1759-2879
dc.relation.organizationInstitute of Social and Preventive Medicine
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titleThe dark side of the force: multiplicity issues in network meta-analysis and how to address them.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage122
oaire.citation.issue1
oaire.citation.startPage105
oaire.citation.volume11
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.embargoChanged2020-09-03 00:30:03
unibe.date.licenseChanged2020-11-05 23:21:39
unibe.description.ispublishedpub
unibe.eprints.legacyId133130
unibe.journal.abbrevTitleRES SYNTH METHODS
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Efthimiou ResSynthMethods 2020.pdf
Size:
586.54 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections