Publication:
FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome

cris.virtual.author-orcid0000-0003-0553-4880
cris.virtualsource.author-orcidc65ad782-26f0-49d9-9464-2a9af45fdfd5
cris.virtualsource.author-orcid57b7a361-d1d5-4ffc-b021-4597ae86ea4a
datacite.rightsopen.access
dc.contributor.authorWucher, Valentin
dc.contributor.authorLegeai, Fabrice
dc.contributor.authorHédan, Benoît
dc.contributor.authorRizk, Guillaume
dc.contributor.authorLagoutte, Lætitia
dc.contributor.authorLeeb, Tosso
dc.contributor.authorJagannathan, Vidya
dc.contributor.authorCadieu, Edouard
dc.contributor.authorDavid, Audrey
dc.contributor.authorLohi, Hannes
dc.contributor.authorCirera, Susanna
dc.contributor.authorFredholm, Merete
dc.contributor.authorBotherel, Nadine
dc.contributor.authorLeegwater, Peter A J
dc.contributor.authorLe Béguec, Céline
dc.contributor.authorFieten, Hille
dc.contributor.authorJohnson, Jeremy
dc.contributor.authorAlföldi, Jessica
dc.contributor.authorAndré, Catherine
dc.contributor.authorLindblad-Toh, Kerstin
dc.contributor.authorHitte, Christophe
dc.contributor.authorDerrien, Thomas
dc.date.accessioned2024-10-24T19:01:45Z
dc.date.available2024-10-24T19:01:45Z
dc.date.issued2017-01-03
dc.description.abstractWhole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.
dc.description.sponsorshipInstitut für Genetik
dc.description.sponsorshipDepartment of Clinical Research and Veterinary Public Health (DCR-VPH)
dc.identifier.doi10.7892/boris.93476
dc.identifier.pmid28053114
dc.identifier.publisherDOI10.1093/nar/gkw1306
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/148380
dc.language.isoen
dc.publisherInformation Retrieval Ltd.
dc.relation.ispartofNucleic acids research
dc.relation.issn0305-1048
dc.relation.organizationDCD5A442C48FE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C13CE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc500 - Science::590 - Animals (Zoology)
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleFEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue8
oaire.citation.startPagee57
oaire.citation.volume45
oairecerif.author.affiliationInstitut für Genetik
oairecerif.author.affiliationDepartment of Clinical Research and Veterinary Public Health (DCR-VPH)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId93476
unibe.journal.abbrevTitleNUCLEIC ACIDS RES
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
gkw1306.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc/4.0
Content:
published

Collections