Publication:
Development and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression.

cris.virtual.author-orcid0000-0002-3830-8508
cris.virtual.author-orcid0000-0002-0955-7572
cris.virtualsource.author-orcidade91a16-6e2b-4d1c-b538-15aac7c36747
cris.virtualsource.author-orcide1dba832-8d83-4311-9d71-ba02eaa0afba
dc.contributor.authorLiu, Qiang
dc.contributor.authorSalanti, Georgia
dc.contributor.authorDe Crescenzo, Franco
dc.contributor.authorOstinelli, Edoardo Giuseppe
dc.contributor.authorLi, Zhenpeng
dc.contributor.authorTomlinson, Anneka
dc.contributor.authorCipriani, Andrea
dc.contributor.authorEfthimiou, Orestis
dc.date.accessioned2024-10-11T16:32:32Z
dc.date.available2024-10-11T16:32:32Z
dc.date.issued2022-05-16
dc.description.abstractBACKGROUND The debate of whether machine learning models offer advantages over standard statistical methods when making predictions is ongoing. We discuss the use of a meta-learner model combining both approaches as an alternative. METHODS To illustrate the development of a meta-learner, we used a dataset of 187,757 people with depression. Using 31 variables, we aimed to predict two outcomes measured 60 days after initiation of antidepressant treatment: severity of depressive symptoms (continuous) and all-cause dropouts (binary). We fitted a ridge regression and a multi-layer perceptron (MLP) deep neural network as two separate prediction models ("base-learners"). We then developed two "meta-learners", combining predictions from the two base-learners. To compare the performance across the different methods, we calculated mean absolute error (MAE, for continuous outcome) and the area under the receiver operating characteristic curve (AUC, for binary outcome) using bootstrapping. RESULTS Compared to the best performing base-learner (MLP base-learner, MAE at 4.63, AUC at 0.59), the best performing meta-learner showed a 2.49% decrease in MAE at 4.52 for the continuous outcome and a 6.47% increase in AUC at 0.60 for the binary outcome. CONCLUSIONS A meta-learner approach may effectively combine multiple prediction models. Choosing between statistical and machine learning models may not be necessary in practice.
dc.description.numberOfPages10
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM)
dc.description.sponsorshipBerner Institut für Hausarztmedizin (BIHAM)
dc.identifier.doi10.48350/170101
dc.identifier.pmid35578254
dc.identifier.publisherDOI10.1186/s12888-022-03986-0
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/85144
dc.language.isoen
dc.publisherBioMed Central
dc.relation.ispartofBMC psychiatry
dc.relation.issn1471-244X
dc.relation.organizationDCD5A442BECFE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BDB9E17DE0405C82790C4DE2
dc.subjectDepression Dropout Machine learning PHQ-9 Statistical model
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titleDevelopment and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage337
oaire.citation.volume22
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationBerner Institut für Hausarztmedizin (BIHAM)
oairecerif.author.affiliation2Institut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-05-18 07:40:47
unibe.description.ispublishedpub
unibe.eprints.legacyId170101
unibe.journal.abbrevTitleBMC PSYCHIATRY
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s12888-022-03986-0.pdf
Size:
1009.95 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections