Publication:
Force-controlled patch clamp of beating cardiac cells.

cris.virtual.author-orcid0000-0003-0465-5138
cris.virtualsource.author-orcidda5e58f1-939a-4ed8-8dcb-53f2b1af5ea9
cris.virtualsource.author-orcid805cf509-9153-4b30-80a3-2d1f3604c741
datacite.rightsrestricted
dc.contributor.authorOssola, Dario
dc.contributor.authorAmarouch, Mohamed Yassine
dc.contributor.authorBehr, Pascal
dc.contributor.authorVörös, János
dc.contributor.authorAbriel, Hugues
dc.contributor.authorZambelli, Tomaso
dc.date.accessioned2024-10-24T17:07:47Z
dc.date.available2024-10-24T17:07:47Z
dc.date.issued2015-03-11
dc.description.abstractFrom its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
dc.description.numberOfPages8
dc.description.sponsorshipDepartement Klinische Forschung, Forschungsgruppe Ionenkanalkrankheiten
dc.identifier.doi10.7892/boris.80624
dc.identifier.pmid25639960
dc.identifier.publisherDOI10.1021/nl504438z
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/141031
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.ispartofNano letters
dc.relation.issn1530-6984
dc.relation.organizationDCD5A442C30EE17DE0405C82790C4DE2
dc.subjectFluidFM
dc.subjectNaV1.5 channels
dc.subjectWhole-cell patch clamp
dc.subjectatomic force microscope
dc.subjectcardiomyocytes
dc.subjectmicrochanneled AFM cantilevers
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleForce-controlled patch clamp of beating cardiac cells.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage1750
oaire.citation.issue3
oaire.citation.startPage1743
oaire.citation.volume15
oairecerif.author.affiliationDepartement Klinische Forschung, Forschungsgruppe Ionenkanalkrankheiten
oairecerif.author.affiliationDepartement Klinische Forschung, Forschungsgruppe Ionenkanalkrankheiten
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.description.ispublishedpub
unibe.eprints.legacyId80624
unibe.journal.abbrevTitleNANO LETT
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
HA.pdf
Size:
5.18 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections