Publication:
Allowing for uncertainty due to missing and LOCF imputed outcomes in meta-analysis.

cris.virtual.author-orcid0000-0002-3830-8508
cris.virtualsource.author-orcid46ab448c-3c6d-4a76-a22e-467343eb75ea
dc.contributor.authorMavridis, Dimitris
dc.contributor.authorSalanti, Georgia
dc.contributor.authorFurukawa, Toshi A
dc.contributor.authorCipriani, Andrea
dc.contributor.authorChaimani, Anna
dc.contributor.authorWhite, Ian R
dc.date.accessioned2024-10-07T16:29:15Z
dc.date.available2024-10-07T16:29:15Z
dc.date.issued2019-02-28
dc.description.abstractThe use of the last observation carried forward (LOCF) method for imputing missing outcome data in randomized clinical trials has been much criticized and its shortcomings are well understood. However, only recently have published studies widely started using more appropriate imputation methods. Consequently, meta-analyses often include several studies reporting their results according to LOCF. The results from such meta-analyses are potentially biased and overprecise. We develop methods for estimating summary treatment effects for continuous outcomes in the presence of both missing and LOCF-imputed outcome data. Our target is the treatment effect if complete follow-up was obtained even if some participants drop out from the protocol treatment. We extend a previously developed meta-analysis model, which accounts for the uncertainty due to missing outcome data via an informative missingness parameter. The extended model includes an extra parameter that reflects the level of prior confidence in the appropriateness of the LOCF imputation scheme. Neither parameter can be informed by the data and we resort to expert opinion and sensitivity analysis. We illustrate the methodology using two meta-analyses of pharmacological interventions for depression.
dc.description.numberOfPages18
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM)
dc.identifier.doi10.7892/boris.120644
dc.identifier.pmid30347460
dc.identifier.publisherDOI10.1002/sim.8009
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/60208
dc.language.isoen
dc.publisherWiley-Blackwell
dc.relation.ispartofStatistics in medicine
dc.relation.issn0277-6715
dc.relation.organizationDCD5A442BECFE17DE0405C82790C4DE2
dc.subjectexpert opinion informatively missing last observation carried forward pattern mixture model sensitivity analysis
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titleAllowing for uncertainty due to missing and LOCF imputed outcomes in meta-analysis.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage737
oaire.citation.issue5
oaire.citation.startPage720
oaire.citation.volume38
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-22 21:33:26
unibe.description.ispublishedpub
unibe.eprints.legacyId120644
unibe.journal.abbrevTitleSTAT MED
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Mavridis StatMed 2018.pdf
Size:
1005.18 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections