Publication: SAM-DA: Decoder Adapter for Efficient Medical Domain Adaptation
cris.virtual.author-orcid | 0000-0003-3447-2359 | |
cris.virtual.author-orcid | 0000-0002-7467-7028 | |
cris.virtual.author-orcid | 0000-0001-6791-4753 | |
cris.virtualsource.author-orcid | 3bc6edde-454b-42fa-8042-933802785d2e | |
cris.virtualsource.author-orcid | 13ddd043-ad1a-4998-a9c6-d6030a17bd76 | |
cris.virtualsource.author-orcid | 261781ae-6f3c-42d9-b0bd-5190cfc67866 | |
cris.virtualsource.author-orcid | fed58d8f-d8d1-4474-a2e1-17b917714f0b | |
cris.virtualsource.author-orcid | d8f64f38-2823-4eb4-8780-7ac09c3c6660 | |
cris.virtualsource.author-orcid | 4b132b22-2fa7-45de-baed-3e055a89eae4 | |
dc.contributor.author | Gamazo Tejero, Javier | |
dc.contributor.author | Schmid, Moritz | |
dc.contributor.author | Márquez Neila, Pablo | |
dc.contributor.author | Zinkernagel, Martin S. | |
dc.contributor.author | Wolf, Sebastian | |
dc.contributor.author | Sznitman, Raphael | |
dc.date.accessioned | 2024-12-09T11:02:25Z | |
dc.date.available | 2024-12-09T11:02:25Z | |
dc.date.issued | 2025 | |
dc.description.abstract | This paper addresses the domain adaptation challenge for semantic segmentation in medical imaging. Despite the impressive performance of recent foundational segmentation models like SAM on natural images, they struggle with medical domain images. Beyond this, recent approaches that perform end-to-end fine-tuning of models are simply not computationally tractable. To address this, we propose a novel SAM adapter approach that minimizes the number of trainable parameters while achieving comparable performances to full fine-tuning. The proposed SAM adapter is strategically placed in the mask decoder, offering excellent and broad generalization capabilities and improved segmentation across both fully supervised and test-time domain adaptation tasks. Extensive validation on four datasets showcases the adapter's efficacy, outperforming existing methods while training less than 1% of SAM's total parameters. | |
dc.description.sponsorship | ARTORG Center for Biomedical Engineering Research | |
dc.description.sponsorship | ARTORG Center - Artificial Intelligence in Medical Image Computing | |
dc.description.sponsorship | ARTORG Center for Biomedical Engineering Research | |
dc.description.sponsorship | Department for BioMedical Research, Forschungsgruppe Augenheilkunde | |
dc.description.sponsorship | Emeriti, Faculty of Medicine | |
dc.description.sponsorship | ARTORG Center - Artificial Intelligence in Medical Image Computing | |
dc.identifier.doi | 10.48620/77256 | |
dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/191505 | |
dc.language.iso | en | |
dc.relation.conference | IEEE/CVF Winter Conference on Applications of Computer Vision | |
dc.title | SAM-DA: Decoder Adapter for Efficient Medical Domain Adaptation | |
dc.type | conference_item | |
dspace.entity.type | Publication | |
oaire.citation.conferenceDate | February 2025 | |
oaire.citation.conferencePlace | Tucson, Arizona | |
oairecerif.author.affiliation | ARTORG Center for Biomedical Engineering Research | |
oairecerif.author.affiliation | ARTORG Center - Artificial Intelligence in Medical Image Computing | |
oairecerif.author.affiliation | ARTORG Center for Biomedical Engineering Research | |
oairecerif.author.affiliation | Department for BioMedical Research, Forschungsgruppe Augenheilkunde | |
oairecerif.author.affiliation | Emeriti, Faculty of Medicine | |
oairecerif.author.affiliation | ARTORG Center - Artificial Intelligence in Medical Image Computing | |
oairecerif.author.affiliation2 | ARTORG Center - Artificial Intelligence in Medical Image Computing | |
oairecerif.author.affiliation2 | Clinic of Ophthalmology | |
oairecerif.author.affiliation2 | ARTORG Center for Biomedical Engineering Research | |
oairecerif.author.affiliation3 | Clinic of Ophthalmology | |
unibe.contributor.corresponding | Gamazo Tejero, Angel Javier | |
unibe.contributor.role | corresponding author | |
unibe.contributor.role | author | |
unibe.contributor.role | author | |
unibe.contributor.role | author | |
unibe.contributor.role | author | |
unibe.contributor.role | author | |
unibe.corresponding.affiliation | ARTORG Center for Biomedical Engineering Research | |
unibe.description.ispublished | submitted | |
unibe.refereed | true | |
unibe.subtype.conference | paper |
Files
Original bundle
1 - 1 of 1
- Name:
- WACV25_pdfexpress_merged.pdf
- Size:
- 7.68 MB
- Format:
- Adobe Portable Document Format
- File Type:
- text
- Content:
- submitted