Publication:
SAM-DA: Decoder Adapter for Efficient Medical Domain Adaptation

cris.virtual.author-orcid0000-0003-3447-2359
cris.virtual.author-orcid0000-0002-7467-7028
cris.virtual.author-orcid0000-0001-6791-4753
cris.virtualsource.author-orcid3bc6edde-454b-42fa-8042-933802785d2e
cris.virtualsource.author-orcid13ddd043-ad1a-4998-a9c6-d6030a17bd76
cris.virtualsource.author-orcid261781ae-6f3c-42d9-b0bd-5190cfc67866
cris.virtualsource.author-orcidfed58d8f-d8d1-4474-a2e1-17b917714f0b
cris.virtualsource.author-orcidd8f64f38-2823-4eb4-8780-7ac09c3c6660
cris.virtualsource.author-orcid4b132b22-2fa7-45de-baed-3e055a89eae4
dc.contributor.authorGamazo Tejero, Javier
dc.contributor.authorSchmid, Moritz
dc.contributor.authorMárquez Neila, Pablo
dc.contributor.authorZinkernagel, Martin S.
dc.contributor.authorWolf, Sebastian
dc.contributor.authorSznitman, Raphael
dc.date.accessioned2024-12-09T11:02:25Z
dc.date.available2024-12-09T11:02:25Z
dc.date.issued2025
dc.description.abstractThis paper addresses the domain adaptation challenge for semantic segmentation in medical imaging. Despite the impressive performance of recent foundational segmentation models like SAM on natural images, they struggle with medical domain images. Beyond this, recent approaches that perform end-to-end fine-tuning of models are simply not computationally tractable. To address this, we propose a novel SAM adapter approach that minimizes the number of trainable parameters while achieving comparable performances to full fine-tuning. The proposed SAM adapter is strategically placed in the mask decoder, offering excellent and broad generalization capabilities and improved segmentation across both fully supervised and test-time domain adaptation tasks. Extensive validation on four datasets showcases the adapter's efficacy, outperforming existing methods while training less than 1% of SAM's total parameters.
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research
dc.description.sponsorshipARTORG Center - Artificial Intelligence in Medical Image Computing
dc.description.sponsorshipARTORG Center for Biomedical Engineering Research
dc.description.sponsorshipDepartment for BioMedical Research, Forschungsgruppe Augenheilkunde
dc.description.sponsorshipEmeriti, Faculty of Medicine
dc.description.sponsorshipARTORG Center - Artificial Intelligence in Medical Image Computing
dc.identifier.doi10.48620/77256
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/191505
dc.language.isoen
dc.relation.conferenceIEEE/CVF Winter Conference on Applications of Computer Vision
dc.titleSAM-DA: Decoder Adapter for Efficient Medical Domain Adaptation
dc.typeconference_item
dspace.entity.typePublication
oaire.citation.conferenceDateFebruary 2025
oaire.citation.conferencePlaceTucson, Arizona
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliationARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliationDepartment for BioMedical Research, Forschungsgruppe Augenheilkunde
oairecerif.author.affiliationEmeriti, Faculty of Medicine
oairecerif.author.affiliationARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliation2ARTORG Center - Artificial Intelligence in Medical Image Computing
oairecerif.author.affiliation2Clinic of Ophthalmology
oairecerif.author.affiliation2ARTORG Center for Biomedical Engineering Research
oairecerif.author.affiliation3Clinic of Ophthalmology
unibe.contributor.correspondingGamazo Tejero, Angel Javier
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.corresponding.affiliationARTORG Center for Biomedical Engineering Research
unibe.description.ispublishedsubmitted
unibe.refereedtrue
unibe.subtype.conferencepaper

Files

Original bundle
Now showing 1 - 1 of 1
Name:
WACV25_pdfexpress_merged.pdf
Size:
7.68 MB
Format:
Adobe Portable Document Format
File Type:
text
Content:
submitted

Collections