Publication:
Channel Estimation in 5G NR MIMO Systems Using GraNet: A Graph Neural Network Framework

cris.virtual.author-orcid0000-0001-5968-7108
cris.virtualsource.author-orcid7779b8ad-9404-47ba-9b65-632c8fde25e6
cris.virtualsource.author-orcid65f054ad-ee65-4a22-a3be-990293fcb596
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0001-6435-3962
datacite.rightsrestricted
dc.contributor.authorNorouzi, Sajedeh
dc.contributor.authorRahmani, Mostafa
dc.contributor.authorBraun, Torsten
dc.contributor.authorBurr, Alister
dc.date.accessioned2024-12-10T14:23:31Z
dc.date.available2024-12-10T14:23:31Z
dc.date.issued2024
dc.description.abstractIn modern wireless communication systems, accurate channel estimation (CE) is essential for coherent signal detection, ensuring reliable reconstruction of transmitted signals. While deep neural networks have significantly advanced CE accuracy, especially in the context of 5G New Radio (NR), they often suffer from high model complexity. This paper presents GraNet, an innovative graph-based neural network specifically designed for channel estimation. By leveraging the intrinsic graph structure of MIMO communication systems, GraNet enhances the learning process, leading to more efficient and accurate CE. In a comparative analysis with ChannelNet, a prominent deep learning-based CE method, simulation results show that GraNet not only improves estimation accuracy but also substantially reduces computational complexity. Although ChannelNet achieves better accuracy at higher SNR levels, GraNet remains competitive while offering lower computational complexity, making it a more efficient solution. These advantages make GraNet a highly promising candidate for practical deployment in 5G NR MIMO systems.
dc.description.sponsorshipInstitute of Computer Science
dc.identifier.doi10.48620/77344
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/191619
dc.language.isoen
dc.subjectGraph Neural Network
dc.subjectMIMO
dc.subject5G NR
dc.subjectChannel Estimation
dc.subject.ddc000 - Computer science, knowledge & systems
dc.titleChannel Estimation in 5G NR MIMO Systems Using GraNet: A Graph Neural Network Framework
dc.typeconference_item
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oairecerif.author.affiliationInstitute of Computer Science
oairecerif.author.affiliationInstitute of Computer Science
oairecerif.author.affiliation2Institute of Computer Science, Communication and Distributed Systems (CDS)
unibe.contributor.correspondingNorouzi, Sajedeh
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.corresponding.affiliationInstitute of Computer Science
unibe.description.ispublishedsubmitted
unibe.refereedtrue
unibe.subtype.conferencepaper

Files

Original bundle
Now showing 1 - 2 of 2
Name:
1571076718 paper-2.pdf
Size:
528.58 KB
Format:
Adobe Portable Document Format
File Type:
text
Content:
submitted
Name:
Deep_learning_based_channel_estimation-6.pdf
Size:
478.87 KB
Format:
Adobe Portable Document Format
File Type:
text
Content:
updated

Collections