Publication:
Prediction of Real-World Drug Effectiveness Prelaunch: Case Study in Rheumatoid Arthritis.

cris.virtual.author-orcid0000-0002-0891-2448
cris.virtual.author-orcid0000-0002-0955-7572
cris.virtual.author-orcid0000-0002-3830-8508
cris.virtual.author-orcid0000-0001-7462-5132
cris.virtualsource.author-orcida0ace44f-f12f-4d85-af86-4ac9db75776b
cris.virtualsource.author-orcid795649e9-ad17-4fdd-b8e9-c9110a41475d
cris.virtualsource.author-orcid05529e60-5bd2-4234-bf3b-e6bfb3d0e21e
cris.virtualsource.author-orcide1dba832-8d83-4311-9d71-ba02eaa0afba
cris.virtualsource.author-orcidcf0b2f7b-e021-4f70-af89-b4cb88c805a2
cris.virtualsource.author-orcidade91a16-6e2b-4d1c-b538-15aac7c36747
cris.virtualsource.author-orcida47a659b-5a23-43fa-86e3-f9401108114c
datacite.rightsopen.access
dc.contributor.authorDidden, Eva-Maria
dc.contributor.authorRuffieux, Yann
dc.contributor.authorHummel, Noemi
dc.contributor.authorEfthimiou, Orestis
dc.contributor.authorReichenbach, Stephan
dc.contributor.authorGsteiger, Sandro
dc.contributor.authorFinckh, Axel
dc.contributor.authorFletcher, Christine
dc.contributor.authorSalanti, Georgia
dc.contributor.authorEgger, Matthias
dc.contributor.authorWork Package, IMI GetReal
dc.date.accessioned2024-10-25T15:18:57Z
dc.date.available2024-10-25T15:18:57Z
dc.date.issued2018-08
dc.description.abstractBACKGROUND Decision makers often need to assess the real-world effectiveness of new drugs prelaunch, when phase II/III randomized controlled trials (RCTs) but no other data are available. OBJECTIVE To develop a method to predict drug effectiveness prelaunch and to apply it in a case study in rheumatoid arthritis (RA). METHODS The approach 1) identifies a market-approved treatment ( S) currently used in a target population similar to that of the new drug ( N); 2) quantifies the impact of treatment, prognostic factors, and effect modifiers on clinical outcome; 3) determines the characteristics of patients likely to receive N in routine care; and 4) predicts treatment outcome in simulated patients with these characteristics. Sources of evidence include expert opinion, RCTs, and observational studies. The framework relies on generalized linear models. RESULTS The case study assessed the effectiveness of tocilizumab (TCZ), a biologic disease-modifying antirheumatic drug (DMARD), combined with conventional DMARDs, compared to conventional DMARDs alone. Rituximab (RTX) combined with conventional DMARDs was identified as treatment S. Individual participant data from 2 RCTs and 2 national registries were analyzed. The model predicted the 6-month changes in the Disease Activity Score 28 (DAS28) accurately: the mean change was -2.101 (standard deviation [SD] = 1.494) in the simulated patients receiving TCZ and conventional DMARDs compared to -1.873 (SD = 1.220) in retrospectively assessed observational data. It was -0.792 (SD = 1.499) in registry patients treated with conventional DMARDs. CONCLUSION The approach performed well in the RA case study, but further work is required to better define its strengths and limitations.
dc.description.numberOfPages11
dc.description.sponsorshipInstitut für Sozial- und Präventivmedizin (ISPM)
dc.description.sponsorshipUniversitätsklinik für Rheumatologie, Immunologie und Allergologie
dc.identifier.doi10.7892/boris.119331
dc.identifier.pmid30074882
dc.identifier.publisherDOI10.1177/0272989X18775975
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/163919
dc.language.isoen
dc.publisherSage Publications
dc.relation.ispartofMedical decision making
dc.relation.issn0272-989X
dc.relation.organizationDCD5A442BAD8E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BECFE17DE0405C82790C4DE2
dc.subjecteffect modifier efficacy-effectiveness gap prediction model prognostic factor rheumatoid arthritis treatment predictor
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc300 - Social sciences, sociology & anthropology::360 - Social problems & social services
dc.titlePrediction of Real-World Drug Effectiveness Prelaunch: Case Study in Rheumatoid Arthritis.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.endPage729
oaire.citation.issue6
oaire.citation.startPage719
oaire.citation.volume38
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationUniversitätsklinik für Rheumatologie, Immunologie und Allergologie
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliationInstitut für Sozial- und Präventivmedizin (ISPM)
oairecerif.author.affiliation2Institut für Sozial- und Präventivmedizin (ISPM)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-24 08:15:32
unibe.description.ispublishedpub
unibe.eprints.legacyId119331
unibe.journal.abbrevTitleMED DECIS MAK
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
Didden MedDecisMaking 2018.pdf
Size:
422.93 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published
Name:
Didden MedDecisMaking 2018_postprint.pdf
Size:
556.76 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted

Collections