Publication:
Clinical prediction model for prognosis in kidney transplant recipients (KIDMO): study protocol.

cris.virtualsource.author-orcid2cbd9e6a-4be4-44fa-89ad-067f82762d16
datacite.rightsopen.access
dc.contributor.authorSchwab, Simon
dc.contributor.authorSidler, Daniel
dc.contributor.authorHaidar, Fadi
dc.contributor.authorKuhn, Christian
dc.contributor.authorSchaub, Stefan
dc.contributor.authorKoller, Michael
dc.contributor.authorMellac, Katell
dc.contributor.authorStürzinger, Ueli
dc.contributor.authorTischhauser, Bruno
dc.contributor.authorBinet, Isabelle
dc.contributor.authorGolshayan, Déla
dc.contributor.authorMüller, Thomas
dc.contributor.authorElmer, Andreas
dc.contributor.authorFranscini, Nicola
dc.contributor.authorKrügel, Nathalie
dc.contributor.authorFehr, Thomas
dc.contributor.authorImmer, Franz
dc.date.accessioned2024-10-25T15:47:35Z
dc.date.available2024-10-25T15:47:35Z
dc.date.issued2023-03-07
dc.description.abstractBACKGROUND Many potential prognostic factors for predicting kidney transplantation outcomes have been identified. However, in Switzerland, no widely accepted prognostic model or risk score for transplantation outcomes is being routinely used in clinical practice yet. We aim to develop three prediction models for the prognosis of graft survival, quality of life, and graft function following transplantation in Switzerland. METHODS The clinical kidney prediction models (KIDMO) are developed with data from a national multi-center cohort study (Swiss Transplant Cohort Study; STCS) and the Swiss Organ Allocation System (SOAS). The primary outcome is the kidney graft survival (with death of recipient as competing risk); the secondary outcomes are the quality of life (patient-reported health status) at 12 months and estimated glomerular filtration rate (eGFR) slope. Organ donor, transplantation, and recipient-related clinical information will be used as predictors at the time of organ allocation. We will use a Fine & Gray subdistribution model and linear mixed-effects models for the primary and the two secondary outcomes, respectively. Model optimism, calibration, discrimination, and heterogeneity between transplant centres will be assessed using bootstrapping, internal-external cross-validation, and methods from meta-analysis. DISCUSSION Thorough evaluation of the existing risk scores for the kidney graft survival or patient-reported outcomes has been lacking in the Swiss transplant setting. In order to be useful in clinical practice, a prognostic score needs to be valid, reliable, clinically relevant, and preferably integrated into the decision-making process to improve long-term patient outcomes and support informed decisions for clinicians and their patients. The state-of-the-art methodology by taking into account competing risks and variable selection using expert knowledge is applied to data from a nationwide prospective multi-center cohort study. Ideally, healthcare providers together with patients can predetermine the risk they are willing to accept from a deceased-donor kidney, with graft survival, quality of life, and graft function estimates available for their consideration. STUDY REGISTRATION Open Science Framework ID: z6mvj.
dc.description.noteAnnalisa Berzigotti, Guido Stirnimann, Guido Beldi und Vanessa Banz are members of the Swiss Transplant Cohort Study
dc.description.sponsorshipUniversitätsklinik für Nephrologie und Hypertonie
dc.identifier.doi10.48350/179603
dc.identifier.pmid36879332
dc.identifier.publisherDOI10.1186/s41512-022-00139-5
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/164771
dc.language.isoen
dc.publisherBioMed Central
dc.relation.ispartofDiagnostic and prognostic research
dc.relation.issn2397-7523
dc.relation.organizationClinic of Nephrology and Hypertension
dc.subjectEstimated glomerular filtration rate Graft survival Kidney transplantation Patient-reported health status Prediction model Prognosis Prognostic model Quality of life Risk calculator Risk score eGFR
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleClinical prediction model for prognosis in kidney transplant recipients (KIDMO): study protocol.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage6
oaire.citation.volume7
oairecerif.author.affiliationUniversitätsklinik für Nephrologie und Hypertonie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-03-08 02:22:17
unibe.description.ispublishedpub
unibe.eprints.legacyId179603
unibe.journal.abbrevTitleDIAGN PROGN RES
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41512-022-00139-5.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections