Publication: Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors
cris.virtualsource.author-orcid | 34dbfe99-0790-428f-8666-a4196769e629 | |
datacite.rights | open.access | |
dc.contributor.author | El Abbassi, Maria | |
dc.contributor.author | Perrin, Mickael L. | |
dc.contributor.author | Barin, Gabriela Borin | |
dc.contributor.author | Sangtarash, Sara | |
dc.contributor.author | Overbeck, Jan | |
dc.contributor.author | Braun, Oliver | |
dc.contributor.author | Lambert, Colin J. | |
dc.contributor.author | Sun, Qiang | |
dc.contributor.author | Prechtl, Thorsten | |
dc.contributor.author | Narita, Akimitsu | |
dc.contributor.author | Müllen, Klaus | |
dc.contributor.author | Ruffieux, Pascal | |
dc.contributor.author | Sadeghi, Hatef | |
dc.contributor.author | Fasel, Roman | |
dc.contributor.author | Calame, Michel | |
dc.date.accessioned | 2024-09-02T16:11:34Z | |
dc.date.available | 2024-09-02T16:11:34Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices. | |
dc.description.numberOfPages | 9 | |
dc.description.sponsorship | Lehrkörper, Phil.-nat. Fakultät | |
dc.identifier.doi | 10.7892/boris.146325 | |
dc.identifier.pmid | 32223259 | |
dc.identifier.publisherDOI | 10.1021/acsnano.0c00604 | |
dc.identifier.uri | https://boris-portal.unibe.ch/handle/20.500.12422/37023 | |
dc.language.iso | en | |
dc.publisher | American Chemical Society | |
dc.relation.ispartof | ACS nano | |
dc.relation.issn | 1936-0851 | |
dc.relation.organization | DCD5A442C14DE17DE0405C82790C4DE2 | |
dc.subject.ddc | 500 - Science::530 - Physics | |
dc.subject.ddc | 500 - Science::540 - Chemistry | |
dc.title | Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors | |
dc.type | article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 5762 | |
oaire.citation.issue | 5 | |
oaire.citation.startPage | 5754 | |
oaire.citation.volume | 14 | |
oairecerif.author.affiliation | Lehrkörper, Phil.-nat. Fakultät | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.contributor.role | creator | |
unibe.date.licenseChanged | 2020-09-03 12:34:47 | |
unibe.description.ispublished | pub | |
unibe.eprints.legacyId | 146325 | |
unibe.journal.abbrevTitle | ACS NANO | |
unibe.refereed | true | |
unibe.subtype.article | journal |
Files
Original bundle
1 - 1 of 1
- Name:
- 20_El Abassi_ACS Nano_Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors.pdf
- Size:
- 7.33 MB
- Format:
- Adobe Portable Document Format
- License:
- https://creativecommons.org/licenses/by-nc-nd/4.0
- Content:
- published