Publication:
Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors

cris.virtualsource.author-orcid34dbfe99-0790-428f-8666-a4196769e629
datacite.rightsopen.access
dc.contributor.authorEl Abbassi, Maria
dc.contributor.authorPerrin, Mickael L.
dc.contributor.authorBarin, Gabriela Borin
dc.contributor.authorSangtarash, Sara
dc.contributor.authorOverbeck, Jan
dc.contributor.authorBraun, Oliver
dc.contributor.authorLambert, Colin J.
dc.contributor.authorSun, Qiang
dc.contributor.authorPrechtl, Thorsten
dc.contributor.authorNarita, Akimitsu
dc.contributor.authorMüllen, Klaus
dc.contributor.authorRuffieux, Pascal
dc.contributor.authorSadeghi, Hatef
dc.contributor.authorFasel, Roman
dc.contributor.authorCalame, Michel
dc.date.accessioned2024-09-02T16:11:34Z
dc.date.available2024-09-02T16:11:34Z
dc.date.issued2020
dc.description.abstractGraphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.
dc.description.numberOfPages9
dc.description.sponsorshipLehrkörper, Phil.-nat. Fakultät
dc.identifier.doi10.7892/boris.146325
dc.identifier.pmid32223259
dc.identifier.publisherDOI10.1021/acsnano.0c00604
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/37023
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.ispartofACS nano
dc.relation.issn1936-0851
dc.relation.organizationDCD5A442C14DE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::530 - Physics
dc.subject.ddc500 - Science::540 - Chemistry
dc.titleControlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors
dc.typearticle
dspace.entity.typePublication
oaire.citation.endPage5762
oaire.citation.issue5
oaire.citation.startPage5754
oaire.citation.volume14
oairecerif.author.affiliationLehrkörper, Phil.-nat. Fakultät
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2020-09-03 12:34:47
unibe.description.ispublishedpub
unibe.eprints.legacyId146325
unibe.journal.abbrevTitleACS NANO
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
20_El Abassi_ACS Nano_Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors.pdf
Size:
7.33 MB
Format:
Adobe Portable Document Format
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections