Publication:
The quest for a biological phenotype of adolescent non-suicidal self-injury: a machine-learning approach.

cris.virtualsource.author-orcidb7cd0457-c94c-45f8-9ac3-8bbf30018a46
cris.virtualsource.author-orcid60f52e79-bdba-4a02-abc4-5598d2515a0c
cris.virtualsource.author-orcid446f26a8-edd7-4c9b-b7d2-c471a1e0d825
cris.virtualsource.author-orcidb7884ddb-4a03-4d8d-9138-dd6bb803cb56
cris.virtualsource.author-orcid7a55cdb3-a9af-4991-a52e-2648771124a7
datacite.rightsopen.access
dc.contributor.authorMürner-Lavanchy, Ines Mirjam
dc.contributor.authorKoenig, Julian
dc.contributor.authorReichl, Corinna
dc.contributor.authorJosi, Johannes
dc.contributor.authorCavelti, Marialuisa
dc.contributor.authorKaess, Michael
dc.date.accessioned2024-10-26T17:07:07Z
dc.date.available2024-10-26T17:07:07Z
dc.date.issued2024-01-25
dc.description.abstractNon-suicidal self-injury (NSSI) is a transdiagnostic psychiatric symptom with high prevalence and relevance in child and adolescent psychiatry. Therefore, it is of great interest to identify a biological phenotype associated with NSSI. The aim of the present study was to cross-sectionally investigate patterns of biological markers underlying NSSI and associated psychopathology in a sample of female patients and healthy controls. Comprehensive clinical data, saliva and blood samples, heart rate variability and pain sensitivity, were collected in n = 149 patients with NSSI and n = 40 healthy participants. Using machine-based learning, we tested the extent to which oxytocin, dehydroepiandrosterone (DHEA), beta-endorphin, free triiodothyronine (fT3), leukocytes, heart rate variability and pain sensitivity were able to classify participants regarding their clinical outcomes in NSSI, depression and borderline personality disorder symptomatology. We evaluated the predictive performance of several models (linear and logistic regression, elastic net regression, random forests, gradient boosted trees) using repeated cross-validation. With NSSI as an outcome variable, both logistic regression and machine learning models showed moderate predictive performance (Area under the Receiver Operating Characteristic Curve between 0.67 and 0.69). Predictors with the highest predictive power were low oxytocin (OR = 0.55; p = 0.002), low pain sensitivity (OR = 1.15; p = 0.021), and high leukocytes (OR = 1.67; p = 0.015). For the psychopathological outcome variables, i.e., depression and borderline personality disorder symptomatology, models including the biological variables performed not better than the null model. A combination of hormonal and inflammatory markers, as well as pain sensitivity, were able to discriminate between participants with and without NSSI disorder. Based on this dataset, however, complex machine learning models were not able to detect non-linear patterns of associations between the biological markers. These findings need replication and future research will reveal the extent to which the respective biomarkers are useful for longitudinal prediction of clinical outcomes or treatment response.
dc.description.numberOfPages7
dc.description.sponsorshipUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
dc.identifier.doi10.48350/192117
dc.identifier.pmid38267430
dc.identifier.publisherDOI10.1038/s41398-024-02776-4
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/173784
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofTranslational Psychiatry
dc.relation.issn2158-3188
dc.relation.organizationDCD5A442BA50E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleThe quest for a biological phenotype of adolescent non-suicidal self-injury: a machine-learning approach.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.volume14
oairecerif.author.affiliationUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
oairecerif.author.affiliationUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
oairecerif.author.affiliationUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
oairecerif.author.affiliationUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
oairecerif.author.affiliationUniversitätsklinik für Kinder- und Jugendpsychiatrie und Psychotherapie (KJP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-01-25 10:00:15
unibe.description.ispublishedpub
unibe.eprints.legacyId192117
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41398-024-02776-4.pdf
Size:
666.25 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections