Publication:
Uncertainty estimation with prediction-error circuits.

cris.virtualsource.author-orcid8ca19d6b-00dd-42c9-9d67-815103b34e19
dc.contributor.authorHertäg, Loreen
dc.contributor.authorWilmes, Katharina A
dc.contributor.authorClopath, Claudia
dc.date.accessioned2025-04-22T13:38:08Z
dc.date.available2025-04-22T13:38:08Z
dc.date.issued2025-03-28
dc.description.abstractNeural circuits continuously integrate noisy sensory stimuli with predictions that often do not perfectly match, requiring the brain to combine these conflicting feedforward and feedback inputs according to their uncertainties. However, how the brain tracks both stimulus and prediction uncertainty remains unclear. Here, we show that a hierarchical prediction-error network can estimate both the sensory and prediction uncertainty with positive and negative prediction-error neurons. Consistent with prior hypotheses, we demonstrate that neural circuits rely more on predictions when sensory inputs are noisy and the environment is stable. By perturbing inhibitory interneurons within the prediction-error circuit, we reveal their role in uncertainty estimation and input weighting. Finally, we link our model to biased perception, showing how stimulus and prediction uncertainty contribute to the contraction bias.
dc.description.numberOfPages15
dc.description.sponsorshipInstitute of Physiology
dc.identifier.doi10.48620/87431
dc.identifier.pmid40155399
dc.identifier.publisherDOI10.1038/s41467-025-58311-6
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/208846
dc.language.isoen
dc.publisherNature Research
dc.relation.ispartofNature Communications
dc.relation.issn2041-1723
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleUncertainty estimation with prediction-error circuits.
dc.typearticle
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.startPage3036
oaire.citation.volume16
oairecerif.author.affiliationInstitute of Physiology
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41467-025-58311-6.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections