Publication:
High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.

cris.virtualsource.author-orcid2044e2e3-94b4-42b2-a6a9-ae5e193fe433
datacite.rightsopen.access
dc.contributor.authorLagarde, Julien
dc.contributor.authorUszczynska-Ratajczak, Barbara
dc.contributor.authorCarbonell, Silvia
dc.contributor.authorPérez-Lluch, Sílvia
dc.contributor.authorAbad, Amaya
dc.contributor.authorDavis, Carrie
dc.contributor.authorGingeras, Thomas R
dc.contributor.authorFrankish, Adam
dc.contributor.authorHarrow, Jennifer
dc.contributor.authorGuigo, Roderic
dc.contributor.authorJohnson, Rory Baldwin
dc.date.accessioned2024-10-25T14:53:41Z
dc.date.available2024-10-25T14:53:41Z
dc.date.issued2017-12
dc.description.abstractAccurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.
dc.description.numberOfPages10
dc.description.sponsorshipUniversitätsklinik für Medizinische Onkologie
dc.identifier.doi10.7892/boris.116920
dc.identifier.pmid29106417
dc.identifier.publisherDOI10.1038/ng.3988
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/162258
dc.language.isoen
dc.publisherNature America
dc.relation.ispartofNature genetics
dc.relation.issn1061-4036
dc.relation.organizationDCD5A442C448E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleHigh-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.endPage1740
oaire.citation.issue12
oaire.citation.startPage1731
oaire.citation.volume49
oairecerif.author.affiliationUniversitätsklinik für Medizinische Onkologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-24 07:51:20
unibe.description.ispublishedpub
unibe.eprints.legacyId116920
unibe.journal.abbrevTitleNAT GENET
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
105064.full.pdf
Size:
5.74 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
submitted
Name:
ng.3988.pdf
Size:
7.33 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections