Publication:
Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature.

cris.virtual.author-orcid0000-0002-8339-5444
cris.virtualsource.author-orciddd61b5c3-9da1-4b6e-b2be-0a72aa39d840
datacite.rightsopen.access
dc.contributor.authorHabgood-Coote, Dominic
dc.contributor.authorWilson, Clare
dc.contributor.authorShimizu, Chisato
dc.contributor.authorBarendregt, Anouk M
dc.contributor.authorPhilipsen, Ria
dc.contributor.authorGalassini, Rachel
dc.contributor.authorCalle, Irene Rivero
dc.contributor.authorWorkman, Lesley
dc.contributor.authorAgyeman, Philipp Kwame Abayie
dc.contributor.authorFerwerda, Gerben
dc.contributor.authorAnderson, Suzanne T
dc.contributor.authorvan den Berg, J Merlijn
dc.contributor.authorEmonts, Marieke
dc.contributor.authorCarrol, Enitan D
dc.contributor.authorFink, Colin G
dc.contributor.authorde Groot, Ronald
dc.contributor.authorHibberd, Martin L
dc.contributor.authorKanegaye, John
dc.contributor.authorNicol, Mark P
dc.contributor.authorPaulus, Stéphane
dc.contributor.authorPollard, Andrew J
dc.contributor.authorSalas, Antonio
dc.contributor.authorSecka, Fatou
dc.contributor.authorSchlapbach, Luregn J
dc.contributor.authorTremoulet, Adriana H
dc.contributor.authorWalther, Michael
dc.contributor.authorZenz, Werner
dc.contributor.authorVan der Flier, Michiel
dc.contributor.authorZar, Heather J
dc.contributor.authorKuijpers, Taco
dc.contributor.authorBurns, Jane C
dc.contributor.authorMartinón-Torres, Federico
dc.contributor.authorWright, Victoria J
dc.contributor.authorCoin, Lachlan J M
dc.contributor.authorCunnington, Aubrey J
dc.contributor.authorHerberg, Jethro A
dc.contributor.authorLevin, Michael
dc.contributor.authorKaforou, Myrsini
dc.date.accessioned2024-10-25T17:08:35Z
dc.date.available2024-10-25T17:08:35Z
dc.date.issued2023-09-08
dc.description.abstractBACKGROUND Appropriate treatment and management of children presenting with fever depend on accurate and timely diagnosis, but current diagnostic tests lack sensitivity and specificity and are frequently too slow to inform initial treatment. As an alternative to pathogen detection, host gene expression signatures in blood have shown promise in discriminating several infectious and inflammatory diseases in a dichotomous manner. However, differential diagnosis requires simultaneous consideration of multiple diseases. Here, we show that diverse infectious and inflammatory diseases can be discriminated by the expression levels of a single panel of genes in blood. METHODS A multi-class supervised machine-learning approach, incorporating clinical consequence of misdiagnosis as a "cost" weighting, was applied to a whole-blood transcriptomic microarray dataset, incorporating 12 publicly available datasets, including 1,212 children with 18 infectious or inflammatory diseases. The transcriptional panel identified was further validated in a new RNA sequencing dataset comprising 411 febrile children. FINDINGS We identified 161 transcripts that classified patients into 18 disease categories, reflecting individual causative pathogen and specific disease, as well as reliable prediction of broad classes comprising bacterial infection, viral infection, malaria, tuberculosis, or inflammatory disease. The transcriptional panel was validated in an independent cohort and benchmarked against existing dichotomous RNA signatures. CONCLUSIONS Our data suggest that classification of febrile illness can be achieved with a single blood sample and opens the way for a new approach for clinical diagnosis. FUNDING European Union's Seventh Framework no. 279185; Horizon2020 no. 668303 PERFORM; Wellcome Trust (206508/Z/17/Z); Medical Research Foundation (MRF-160-0008-ELP-KAFO-C0801); NIHR Imperial BRC.
dc.description.numberOfPages20
dc.description.sponsorshipUniversitätsklinik für Kinderheilkunde
dc.identifier.doi10.48350/185587
dc.identifier.pmid37597512
dc.identifier.publisherDOI10.1016/j.medj.2023.06.007
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/169382
dc.language.isoen
dc.publisherCell Press
dc.relation.ispartofMed (N Y)
dc.relation.issn2666-6340
dc.relation.organizationDepartment of Paediatrics
dc.relation.organizationClinic of Paediatric Medicine, Paediatric Infectiology
dc.subjectRNA-seq Translation to patients biomarkers gene expression host response infectious disease inflammatory disease machine learning multi-class classification point-of-care diagnostics transcriptomics
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleDiagnosis of childhood febrile illness using a multi-class blood RNA molecular signature.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage654.e5
oaire.citation.issue9
oaire.citation.startPage635
oaire.citation.volume4
oairecerif.author.affiliationUniversitätsklinik für Kinderheilkunde
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-08-21 14:37:07
unibe.description.ispublishedpub
unibe.eprints.legacyId185587
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S2666634023001940-main.pdf
Size:
3.54 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections