Publication:
Detection of myocardial ischemia by intracoronary ECG using convolutional neural networks.

cris.virtual.author-orcid0000-0002-3199-4664
cris.virtualsource.author-orcid793717ae-e3d8-4280-885f-7e671b5dc3a2
cris.virtualsource.author-orcidd6b11c5c-1087-4226-bfe6-2be4e29c6566
datacite.rightsopen.access
dc.contributor.authorBigler, Marius Reto
dc.contributor.authorSeiler, Christian
dc.date.accessioned2024-09-21T16:02:56Z
dc.date.available2024-09-21T16:02:56Z
dc.date.issued2021-06-14
dc.description.abstractINTRODUCTION The electrocardiogram (ECG) is a valuable tool for the diagnosis of myocardial ischemia as it presents distinctive ischemic patterns. Deep learning methods such as convolutional neural networks (CNN) are employed to extract data-derived features and to recognize natural patterns. Hence, CNN enable an unbiased view on well-known clinical phenomenon, e.g., myocardial ischemia. This study tested a novel, hypothesis-generating approach using pre-trained CNN to determine the optimal ischemic parameter as obtained from the highly susceptible intracoronary ECG (icECG). METHOD This was a retrospective observational study in 228 patients with chronic coronary syndrome. Each patient had participated in clinical trials with icECG recording and ST-segment shift measurement at the beginning (i.e., non-ischemic) and the end (i.e., ischemic) of a one-minute proximal coronary artery balloon occlusion establishing the reference. Using these data (893 icECGs in total), two pre-trained, open-access CNN (GoogLeNet/ResNet101) were trained to recognize ischemia. The best performing CNN during training were compared with the icECG ST-segment shift for diagnostic accuracy in the detection of artificially induced myocardial ischemia. RESULTS Using coronary patency or occlusion as reference for absent or present myocardial ischemia, receiver-operating-characteristics (ROC)-analysis of manually obtained icECG ST-segment shift (mV) showed an area under the ROC-curve (AUC) of 0.903±0.043 (p<0.0001, sensitivity 80%, specificity 92% at a cut-off of 0.279mV). The best performing CNN showed an AUC of 0.924 (sensitivity 93%, specificity 92%). DeLong-Test of the ROC-curves showed no significant difference between the AUCs. The underlying morphology responsible for the network prediction differed between the trained networks but was focused on the ST-segment and the T-wave for myocardial ischemia detection. CONCLUSIONS When tested in an experimental setting with artificially induced coronary artery occlusion, quantitative icECG ST-segment shift and CNN using pathophysiologic prediction criteria detect myocardial ischemia with similarly high accuracy.
dc.description.sponsorshipUniversitätsklinik für Kardiologie
dc.identifier.doi10.48350/157514
dc.identifier.pmid34125855
dc.identifier.publisherDOI10.1371/journal.pone.0253200
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/45693
dc.language.isoen
dc.publisherPublic Library of Science
dc.relation.ispartofPLoS ONE
dc.relation.issn1932-6203
dc.relation.organizationDCD5A442BB15E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleDetection of myocardial ischemia by intracoronary ECG using convolutional neural networks.
dc.typearticle
dspace.entity.typePublication
oaire.citation.issue6
oaire.citation.startPagee0253200
oaire.citation.volume16
oairecerif.author.affiliationUniversitätsklinik für Kardiologie
oairecerif.author.affiliationUniversitätsklinik für Kardiologie
oairecerif.author.affiliation2Dekanat der Medizinischen Fakultät
oairecerif.author.affiliation3Institut für Physiologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-07-14 05:51:27
unibe.description.ispublishedpub
unibe.eprints.legacyId157514
unibe.journal.abbrevTitlePLOS ONE
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Bigler_et_al._-_Detection_of_myocardial_ischemia_by_intracoronary_ECG_using_convolutional_neural_networks.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections