Publication:
A Scalable Risk Scoring System for COVID-19 Inpatients Based on Consumer-grade Wearables: Statistical Analysis and Model Development.

cris.virtualsource.author-orcid3e537b9c-d319-4c3b-9181-69128fb89c54
cris.virtualsource.author-orcid1c1af93f-7785-4d74-908f-5e4d7049ea09
cris.virtualsource.author-orcid44e2b7f7-32c8-4acf-a530-f22a048716ea
cris.virtualsource.author-orcid693aa87d-2eff-42bd-8031-7800a2bb95af
cris.virtualsource.author-orcidfab9dcfe-07ad-4552-9126-796f8451a5e5
cris.virtualsource.author-orcida79e2555-0f11-4ca4-a8ca-8dc6f5bdc490
datacite.rightsrestricted
dc.contributor.authorFöll, Simon
dc.contributor.authorLison, Adrian
dc.contributor.authorMaritsch, Martin
dc.contributor.authorKlingberg, Karsten Werner
dc.contributor.authorLehmann, Vera Franziska
dc.contributor.authorZüger, Thomas Johannes
dc.contributor.authorSrivastava, David Shiva
dc.contributor.authorJegerlehner, Sabrina
dc.contributor.authorFeuerriegel, Stefan
dc.contributor.authorFleisch, Elgar
dc.contributor.authorExadaktylos, Aristomenis
dc.contributor.authorWortmann, Felix
dc.date.accessioned2024-10-11T16:35:01Z
dc.date.available2024-10-11T16:35:01Z
dc.date.issued2022-06-21
dc.description.abstractBACKGROUND To provide effective care for COVID-19 inpatients, clinical practitioners need systems that monitor patient health and subsequently allow for risk scoring. Existing approaches for risk scoring in COVID-19 patients focus primarily on intensive care units with specialized medical measurement devices, but not on hospital general wards. OBJECTIVE In this paper, we aim to develop a risk score for COVID-19 inpatients in general wards based on consumer-grade wearables (smartwatches). METHODS Patients wore consumer-grade wearables to record physiological measurements such as heart rate, heart rate variability, and respiration frequency. Based on Bayesian survival analysis, we validate the association between these measurements and the patient outcomes (i.e., discharge or intensive care unit admission). To build our risk score, we generate a low-dimensional representation of the physiological features. Subsequently, a pooled ordinal regression with time-dependent covariates infers the probability of either hospital discharge or intensive care unit (ICU) admission. RESULTS We evaluate the predictive performance of our developed system for risk scoring in a single-center, prospective study based on N = 40 inpatients with COVID-19 in a general ward of a tertiary referral center in Switzerland. First, the Bayesian survival analysis shows that physiological measurements from consumer-grade wearables are significantly associated with the patient outcomes (i.e., discharge or intensive care unit admission). Second, our risk score achieves a time-dependent area under the receiver operating characteristic curve of 0.73 to 0.90 based on leave-one-subject-out cross-validation. CONCLUSIONS Our results demonstrate the effectiveness of consumer-grade wearables for risk scoring in COVID-19 inpatients. Due to their low cost and ease of use, consumer-grade wearables could enable a scalable monitoring system. CLINICALTRIAL The study Wearable-based COVID-19 Markers for Prediction of Clinical Trajectories (WAVE) is registered at https://clinicaltrials.gov (Identifier: NCT04357834). The study followed the Declaration of Helsinki, the guidelines of good clinical practice, the Swiss health laws, and the ordinance on clinical research. The study was approved by the local ethics committee Bern, Switzerland (ID 2020-00874). Each patient gave informed written consent before any study-related procedure.
dc.description.sponsorshipUniversitäres Notfallzentrum
dc.description.sponsorshipUniversitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
dc.identifier.doi10.48350/170270
dc.identifier.pmid35613417
dc.identifier.publisherDOI10.2196/35717
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/85278
dc.language.isoen
dc.publisherJMIR Publications
dc.relation.ispartofJMIR formative research
dc.relation.issn2561-326X
dc.relation.organizationDCD5A442BA4CE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C012E17DE0405C82790C4DE2
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleA Scalable Risk Scoring System for COVID-19 Inpatients Based on Consumer-grade Wearables: Statistical Analysis and Model Development.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue6
oaire.citation.startPagee35717
oaire.citation.volume6
oairecerif.author.affiliationUniversitäres Notfallzentrum
oairecerif.author.affiliationUniversitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
oairecerif.author.affiliationUniversitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin & Metabolismus (UDEM)
oairecerif.author.affiliationUniversitäres Notfallzentrum
oairecerif.author.affiliationUniversitäres Notfallzentrum
oairecerif.author.affiliationUniversitäres Notfallzentrum
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-05-28 03:31:39
unibe.description.ispublishedpub
unibe.eprints.legacyId170270
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
preprint-35717-accepted.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
submitted

Collections