Publication:
A mixture of hidden Markov models to predict the lymphatic spread in head and neck cancer depending on primary tumor location

cris.virtual.author-orcid0000-0003-0948-1392
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0001-9434-328X
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0002-4282-0643
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0002-0026-0553
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0001-5261-6446
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0002-2700-3522
cris.virtualsource.author-orcid86655b3e-7b2d-49ef-959d-01183a03e32b
cris.virtualsource.author-orcid77241cdc-4d8c-4d18-9987-58a73b2097d1
cris.virtualsource.author-orcid3d7076a2-8835-49ed-8d2f-794a5ccd91e1
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0002-8060-7827
cris.virtualsource.author-orcid900188c6-9c50-40ae-91fc-67f39e89ffd7
cris.virtualsource.author-orcidwill be referenced::ORCID::0000-0002-4275-990X
datacite.rightsmetadata.only
dc.contributor.authorLudwig, Roman
dc.contributor.authorBrönnimann Julian
dc.contributor.authorPérez Haas Yoel Samuel
dc.contributor.authorLooman Esmée Lauren
dc.contributor.authorBalermpas, Panagiotis
dc.contributor.authorBenavente, Sergi
dc.contributor.authorSchubert, Adrian
dc.contributor.authorBarbatei Dorothea
dc.contributor.authorBauwens Laurence
dc.contributor.authorHoffmann Jean-Marc
dc.contributor.authorEliçin, Olgun
dc.contributor.authorDettmer, Matthias
dc.contributor.authorPouymayou, Bertrand
dc.contributor.authorGiger, Roland
dc.contributor.authorVincent Grégoire
dc.contributor.authorUnkelbach, Jan
dc.date.accessioned2024-11-21T14:43:41Z
dc.date.available2024-11-21T14:43:41Z
dc.date.issued2024
dc.description.abstractAbstract We previously developed a mechanistic hidden Markov model (HMM) to predict the lymphatic tumor progression in oropharyngeal squamous cell carcinomas. To extend the model to other tumor subsites in the head and neck defined by ICD-10 codes, we develop a mixture model combining multiple HMMs. The mixture coefficients and the model parameters are learned via an EM-like algorithm from a large multi-centric dataset on lymph node involvement. The methodology is demonstrated for tumors in the oropharynx and oral cavity. The mixture model groups anatomically nearly subsites and yields interpretable mixture coefficients consistent with anatomical location. It allows the prediction of differences in lymph node involvement depending on tumor subsite.
dc.description.sponsorshipInstitute of Tissue Medicine and Pathology
dc.description.sponsorshipClinic of Ear, Nose and Throat Disorders (ENT)
dc.description.sponsorshipClinic of Radiation Oncology
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/189551
dc.language.isoen
dc.relation.conference20th International Conference on the use of Computers in Radiation therapy
dc.titleA mixture of hidden Markov models to predict the lymphatic spread in head and neck cancer depending on primary tumor location
dc.typeconference_item
dspace.entity.typePublication
oaire.citation.conferenceDate8-11.07.2024
oairecerif.author.affiliationClinic of Ear, Nose and Throat Disorders (ENT)
oairecerif.author.affiliationClinic of Radiation Oncology
oairecerif.author.affiliationInstitute of Tissue Medicine and Pathology
oairecerif.author.affiliationClinic of Ear, Nose and Throat Disorders (ENT)
oairecerif.author.affiliation2Clinic of Radiation Oncology
oairecerif.identifier.urlhttps://www.iccr2024.org/papers/525592.pdf
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.conferenceposter

Files

Collections