Publication:
Transformer-based spatial-temporal detection of apoptotic cell death in live-cell imaging.

cris.virtualsource.author-orcid3ad9046a-e07a-4418-8b3d-528a7213b2cd
cris.virtualsource.author-orcidafd1b9f4-1392-4b3f-9765-9f866362a7b4
cris.virtualsource.author-orcid46ac8703-debf-423d-94c9-0b794c2838f7
cris.virtualsource.author-orcid9d8d8eac-5e2d-4277-8c88-4c456ea715d6
dc.contributor.authorPulfer, Alain
dc.contributor.authorPizzagalli, Diego Ulisse
dc.contributor.authorGagliardi, Paolo Armando
dc.contributor.authorHinderling, Lucien Simon
dc.contributor.authorLopez, Paul
dc.contributor.authorZayats, Romaniya
dc.contributor.authorCarrillo-Barberà, Pau
dc.contributor.authorAntonello, Paola
dc.contributor.authorPalomino-Segura, Miguel
dc.contributor.authorGrädel, Benjamin Andreas
dc.contributor.authorNicolai, Mariaclaudia
dc.contributor.authorGiusti, Alessandro
dc.contributor.authorThelen, Marcus
dc.contributor.authorGambardella, Luca Maria
dc.contributor.authorMurooka, Thomas T
dc.contributor.authorPertz, Olivier
dc.contributor.authorKrause, Rolf
dc.contributor.authorGonzalez, Santiago Fernandez
dc.date.accessioned2024-10-26T17:36:09Z
dc.date.available2024-10-26T17:36:09Z
dc.date.issued2024-03-18
dc.description.abstractIntravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.
dc.description.numberOfPages25
dc.description.sponsorshipInstitut für Zellbiologie (IZB)
dc.identifier.doi10.48350/194469
dc.identifier.pmid38497754
dc.identifier.publisherDOI10.7554/eLife.90502
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/175654
dc.language.isoen
dc.publishereLife Sciences Publications
dc.relation.ispartofeLife
dc.relation.issn2050-084X
dc.relation.organizationDCD5A442C578E17DE0405C82790C4DE2
dc.subjectcell culture computational biology immunology inflammation lymph node mouse spleen systems biology
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.titleTransformer-based spatial-temporal detection of apoptotic cell death in live-cell imaging.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.volume12
oairecerif.author.affiliationInstitut für Zellbiologie (IZB)
oairecerif.author.affiliationInstitut für Zellbiologie (IZB)
oairecerif.author.affiliationInstitut für Zellbiologie (IZB)
oairecerif.author.affiliationInstitut für Zellbiologie (IZB)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-03-21 14:49:05
unibe.description.ispublishedpub
unibe.eprints.legacyId194469
unibe.journal.abbrevTitleeLife
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
elife-90502-v2.pdf
Size:
9.01 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections