Publication:
S1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P1 and S1P3 Receptor Activation and HIF-2α Stabilization.

cris.virtualsource.author-orcid5fa93bc3-11ef-4601-a3a4-692b0c37e246
cris.virtualsource.author-orcided1de283-e286-4731-9cb0-4ae3cdc9e26c
cris.virtualsource.author-orcid91d89f12-d512-4291-ac88-f2506d0de064
datacite.rightsopen.access
dc.contributor.authorHafizi, Redona
dc.contributor.authorImeri, Faik
dc.contributor.authorWenger, Roland H.
dc.contributor.authorHuwiler, Andrea
dc.date.accessioned2024-09-02T17:57:04Z
dc.date.available2024-09-02T17:57:04Z
dc.date.issued2021-08-31
dc.description.abstractErythropoietin (Epo) is the critical hormone for erythropoiesis. In adults, Epo is mainly produced by a subset of interstitial fibroblasts in the kidney, with minor amounts being produced in the liver and the brain. In this study, we used the immortalized renal interstitial fibroblast cell line FAIK F3-5 to investigate the ability of the bioactive sphingolipid sphingosine 1-phosphate (S1P) to stimulate Epo production and to reveal the mechanism involved. Stimulation of cells with exogenous S1P under normoxic conditions (21% O2) led to a dose-dependent increase in Epo mRNA and protein levels and subsequent release of Epo into the medium. S1P also enhanced the stabilization of HIF-2α, a key transcription factor for Epo expression. S1P-stimulated Epo mRNA and protein expression was abolished by HIF-2α mRNA knockdown or by the HIF-2 inhibitor compound 2. Furthermore, the approved S1P receptor modulator FTY720, and its active form FTY720-phosphate, both exerted a similar effect on Epo expression as S1P. The effect of S1P on Epo was antagonized by the selective S1P1 and S1P3 antagonists NIBR-0213 and TY-52156, but not by the S1P2 antagonist JTE-013. Moreover, inhibitors of the classical MAPK/ERK, the p38-MAPK, and inhibitors of protein kinase (PK) C and D all blocked the effect of S1P on Epo expression. Finally, the S1P and FTY720 effects were recapitulated in the Epo-producing human neuroblastoma cell line Kelly, suggesting that S1P receptor-dependent Epo synthesis is of general relevance and not species-specific. In summary, these data suggest that, in renal interstitial fibroblasts, which are the primary source of plasma Epo, S1P1 and 3 receptor activation upregulates Epo under normoxic conditions. This may have a therapeutic impact on disease situations such as chronic kidney disease, where Epo production is impaired, causing anemia, but it may also have therapeutic value as Epo can mediate additional tissue-protective effects in various organs.
dc.description.sponsorshipInstitut für Pharmakologie
dc.identifier.doi10.48350/159706
dc.identifier.pmid34502385
dc.identifier.publisherDOI10.3390/ijms22179467
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/43901
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofInternational journal of molecular sciences
dc.relation.issn1422-0067
dc.relation.organizationDCD5A442BD11E17DE0405C82790C4DE2
dc.subjectS1P receptors erythropoietin fingolimod hypoxia protein kinase C renal interstitial fibroblasts sphingosine 1-phosphate
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleS1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P1 and S1P3 Receptor Activation and HIF-2α Stabilization.
dc.typearticle
dspace.entity.typePublication
oaire.citation.issue17
oaire.citation.volume22
oairecerif.author.affiliationInstitut für Pharmakologie
oairecerif.author.affiliationInstitut für Pharmakologie
oairecerif.author.affiliationInstitut für Pharmakologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-09-29 10:42:05
unibe.description.ispublishedpub
unibe.eprints.legacyId159706
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Huwiler_S1P_Stimulates_Erythropoietin.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections