Publication:
Benchmarking Stroke Outcome Prediction through Comprehensive Data Analysis - NeuralCup 2023.

cris.virtualsource.author-orcid099017d5-ecd0-4285-93ee-0f7465cbf6b7
cris.virtualsource.author-orcid8ae13157-9c1d-4f5f-8fa1-0719d76fe6ca
cris.virtualsource.author-orcidb5b94094-d6bd-4ce8-b4f9-1113c7c02303
datacite.rightsopen.access
dc.contributor.authorMatsulevits, Anna
dc.contributor.authorAlvez, Pedro
dc.contributor.authorAtzori, Manfredo
dc.contributor.authorBeyh, Ahmad
dc.contributor.authorCorbetta, Maurizio
dc.contributor.authorDel Pup, Federico
dc.contributor.authorDulyan, Lilit
dc.contributor.authorFoulon, Chris
dc.contributor.authorHope, Thomas
dc.contributor.authorIoannucci, Stefano
dc.contributor.authorJobard, Gael
dc.contributor.authorLemaitre, Hervé
dc.contributor.authorNeville, Douglas
dc.contributor.authorNozais, Victor
dc.contributor.authorRorden, Christopher
dc.contributor.authorSaprikis, Orionas-Vasilis
dc.contributor.authorSibon, Igor
dc.contributor.authorSperber, Christoph
dc.contributor.authorTeghipco, Alex
dc.contributor.authorThirion, Bertrand
dc.contributor.authorTshimanga, Louis Fabrice
dc.contributor.authorUmarova, Roza
dc.contributor.authorVaidelyte, Ema Birute
dc.contributor.authorvan den Hoven, Emiel
dc.contributor.authorRodriguez, Esteban Villar
dc.contributor.authorZanola, Andrea
dc.contributor.authorTourdias, Thomas
dc.contributor.authorde Schotten, Michel Thiebaut
dc.date.accessioned2024-12-02T10:19:25Z
dc.date.available2024-12-02T10:19:25Z
dc.date.issued2024-11-19
dc.description.abstractStroke is a significant cause of mortality and long-term disability worldwide, with variable recovery trajectories posing substantial challenges in anticipating post-event care and rehabilitation planning. The NeuralCup 2023 consortium was established to address these challenges by comparing the predictability of stroke outcome models through a collaborative, data-driven approach. This study presents the consortium's findings, which involved 15 participating teams worldwide. Using a comprehensive dataset, which included clinical and imaging data, we conducted an open competition to identify and compare predictors of motor, cognitive, and neuropsychological (emotional) outcomes one-year post-stroke. Analyses incorporated both traditional and novel methods, including machine learning algorithms. These efforts culminated in the search for 'optimal recipes' for predicting each domain through an exhaustive exploration of the features of all the approaches. Key predictors included lesion characteristics, T1-weighted MRI sequences, and demographic factors. Notably, integrating FLAIR imaging and white matter tract analysis emerged as crucial to improving the accuracy of cognitive and motor outcome predictions, respectively. These findings advocate for a tailored, multifaceted approach to stroke outcome prediction, underscoring the potential of collaborative data science in addressing complex neurological prognostication challenges. This study also sets a new benchmark methodology in stroke research, offering a foundational step toward personalized care strategies that could significantly impact recovery planning and quality of life for stroke survivors.
dc.description.numberOfPages21
dc.description.sponsorshipUniversity Hospital of Psychiatry and Psychotherapy
dc.description.sponsorshipClinic of Neurology
dc.description.sponsorshipClinic of Neurosurgery
dc.identifier.doi10.48620/77076
dc.identifier.pmid39464108
dc.identifier.publisherDOI10.1101/2024.10.17.618691
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/189414
dc.language.isoen
dc.publisherCold Spring Harbor Laboratory
dc.relation.ispartofseriesbioRxiv
dc.relation.issn2692-8205
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleBenchmarking Stroke Outcome Prediction through Comprehensive Data Analysis - NeuralCup 2023.
dc.typeworking_paper
dspace.entity.typePublication
dspace.file.typetext
oairecerif.author.affiliationClinic of Neurology
oairecerif.author.affiliationClinic of Neurosurgery
oairecerif.author.affiliationUniversity Hospital of Psychiatry and Psychotherapy
oairecerif.author.affiliation2Clinic of Neurology
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue

Files

Original bundle
Now showing 1 - 1 of 1
Name:
2024.10.17.618691v2.full.pdf
Size:
760.91 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections