Publication:
Synchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels.

cris.virtual.author-orcid0000-0003-3388-9187
cris.virtualsource.author-orcid07c63486-ee3a-4e33-8520-eaaadbf8dc8b
datacite.rightsopen.access
dc.contributor.authorGhafar, Abdul
dc.contributor.authorParikka, Kirsti
dc.contributor.authorHaberthür, David
dc.contributor.authorTenkanen, Maija
dc.contributor.authorMikkonen, Kirsi S
dc.contributor.authorSuuronen, Jussi-Petteri
dc.date.accessioned2024-09-02T16:35:06Z
dc.date.available2024-09-02T16:35:06Z
dc.date.issued2017-07-28
dc.description.abstractThis study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels' mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications.
dc.description.numberOfPages20
dc.description.sponsorshipInstitut für Anatomie, Topographische und Klinische Anatomie
dc.identifier.doi10.48350/149262
dc.identifier.pmid28773235
dc.identifier.publisherDOI10.3390/ma10080871
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/38574
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofMaterials
dc.relation.issn1996-1944
dc.relation.organizationDCD5A442BCD7E17DE0405C82790C4DE2
dc.relation.organizationDCD5A442BD6CE17DE0405C82790C4DE2
dc.subjectice-templating image analysis nanofibrillated cellulose polysaccharide synchrotron microtomography
dc.titleSynchrotron Microtomography Reveals the Fine Three-Dimensional Porosity of Composite Polysaccharide Aerogels.
dc.typearticle
dspace.entity.typePublication
oaire.citation.issue8
oaire.citation.volume10
oairecerif.author.affiliationInstitut für Anatomie, Topographische und Klinische Anatomie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-01-28 11:19:56
unibe.description.ispublishedpub
unibe.eprints.legacyId149262
unibe.journal.abbrevTitleMATERIALS
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
materials-10-00871.pdf
Size:
9.66 MB
Format:
Adobe Portable Document Format
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections