Publication:
A Minimal Annotation Pipeline for Deep Learning Segmentation of Skeletal Muscles.

cris.virtual.author-orcid0000-0001-7577-9870
cris.virtual.author-orcid0000-0003-3925-5142
cris.virtualsource.author-orcide78e4403-39d2-4113-b3d1-6c5dd36f7b1f
cris.virtualsource.author-orcid741255f8-18a1-4de5-9e47-481b67f4a9f8
datacite.rightsopen.access
dc.contributor.authorBaudin, Pierre-Yves
dc.contributor.authorBalsiger, Fabian
dc.contributor.authorBeck, Lea
dc.contributor.authorBoisserie, Jean-Marc
dc.contributor.authorJouan, Sophie
dc.contributor.authorMarty, Benjamin
dc.contributor.authorReyngoudt, Harmen
dc.contributor.authorScheidegger, Olivier
dc.date.accessioned2025-05-20T11:59:13Z
dc.date.available2025-05-20T11:59:13Z
dc.date.issued2025-07
dc.description.abstractTranslating quantitative skeletal muscle MRI biomarkers into clinics requires efficient automatic segmentation methods. The purpose of this work is to investigate a simple yet effective iterative methodology for building a high-quality automatic segmentation model while minimizing the manual annotation effort. We used a retrospective database of quantitative MRI examinations (n = 70) of healthy and pathological thighs for training a nnU-Net segmentation model. Healthy volunteers and patients with various neuromuscular diseases, broadly categorized as dystrophic, inflammatory, neurogenic, and unlabeled NMDs. We designed an iterative procedure, progressively adding cases to the training set and using a simple visual five-level rating scale to judge the validity of generated segmentations for clinical use. On an independent test set (n = 20), we assessed the quality of the segmentation in 13 individual thigh muscles using standard segmentation metrics-dice coefficient (DICE) and 95% Hausdorff distance (HD95)-and quantitative biomarkers-cross-sectional area (CSA), fat fraction (FF), and water-T1/T2. We obtained high-quality segmentations (DICE = 0.88 ± 0.15/0.86 ± 0.14, HD95 = 6.35 ± 12.33/6.74 ± 11.57 mm), comparable to recent works, although with a smaller training set (n = 30). Inter-rater agreement on the five-level scale was fair to moderate but showed progressive improvement of the segmentation model along with the iterations. We observed limited differences from manually delineated segmentations on the quantitative outcomes (MAD: CSA = 65.2 mm2, FF = 1%, water-T1 = 8.4 ms, water-T2 = 0.35 ms), with variability comparable to manual delineations.
dc.description.sponsorshipInstitute of Diagnostic and Interventional Neuroradiology
dc.description.sponsorshipClinic of Neurology
dc.identifier.doi10.48620/88135
dc.identifier.pmid40390325
dc.identifier.publisherDOI10.1002/nbm.70066
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/211089
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofNMR in Biomedicine
dc.relation.issn1099-1492
dc.relation.issn0952-3480
dc.subjectautomatic segmentation
dc.subjectneuromuscular disorders
dc.subjectnnU‐net
dc.subjectquantitative MRI
dc.subjectskeletal muscles
dc.titleA Minimal Annotation Pipeline for Deep Learning Segmentation of Skeletal Muscles.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue7
oaire.citation.startPagee70066
oaire.citation.volume38
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
oairecerif.author.affiliationInstitute of Diagnostic and Interventional Neuroradiology
oairecerif.author.affiliation2Clinic of Neurology
oairecerif.author.affiliation2Clinic of Neurology
unibe.additional.sponsorshipClinic of Neurology
unibe.contributor.rolecorresponding author
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.contributor.roleauthor
unibe.description.ispublishedpub
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
NMR in Biomedicine - 2025 - Baudin - A Minimal Annotation Pipeline for Deep Learning Segmentation of Skeletal Muscles.pdf
Size:
5.97 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections