Publication:
Quantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers.

cris.virtual.author-orcid0000-0001-6104-4320
cris.virtualsource.author-orcida65c50b3-a743-4b7a-b8bc-c5cc67ee9d7c
cris.virtualsource.author-orcida0ee9665-4295-4ad7-bd89-e3d6cc1cf81b
cris.virtualsource.author-orcid954a4283-f172-4cf3-af3b-4a4cc51d4b5f
datacite.rightsrestricted
dc.contributor.authorLi, Peihui
dc.contributor.authorHou, Songjun
dc.contributor.authorAlharbi, Bader
dc.contributor.authorWu, Qingqing
dc.contributor.authorChen, Yijian
dc.contributor.authorZhou, Li
dc.contributor.authorGao, Tengyang
dc.contributor.authorLi, Ruihao
dc.contributor.authorYang, Lan
dc.contributor.authorChang, Xinyue
dc.contributor.authorDong, Gang
dc.contributor.authorLiu, Xunshan
dc.contributor.authorDecurtins, Silvio
dc.contributor.authorLiu, Shi-Xia
dc.contributor.authorHong, Wenjing
dc.contributor.authorLambert, Colin J
dc.contributor.authorJia, Chuancheng
dc.contributor.authorGuo, Xuefeng
dc.date.accessioned2024-10-11T16:58:30Z
dc.date.available2024-10-11T16:58:30Z
dc.date.issued2022-08-31
dc.description.abstractStacking interactions are of significant importance in the fields of chemistry, biology, and material optoelectronics because they determine the efficiency of charge transfer between molecules and their quantum states. Previous studies have proven that when two monomers are π-stacked in series to form a dimer, the electrical conductance of the dimer is significantly lower than that of the monomer. Here, we present a strong opposite case that when two anthanthrene monomers are π-stacked to form a dimer in a scanning tunneling microscopic break junction, the conductance increases by as much as 25 in comparison with a monomer, which originates from a room-temperature quantum interference. Remarkably, both theory and experiment consistently reveal that this effect can be reversed by changing the connectivity of external electrodes to the monomer core. These results demonstrate that synthetic control of connectivity to molecular cores can be combined with stacking interactions between their π systems to modify and optimize charge transfer between molecules, opening up a wide variety of potential applications ranging from organic optoelectronics and photovoltaics to nanoelectronics and single-molecule electronics.
dc.description.numberOfPages9
dc.description.sponsorshipDepartement für Chemie, Biochemie und Pharmazie (DCBP)
dc.identifier.doi10.48350/171783
dc.identifier.pmid35930760
dc.identifier.publisherDOI10.1021/jacs.2c05909
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/86543
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.ispartofJournal of the American Chemical Society
dc.relation.issn0002-7863
dc.relation.organizationDCD5A442C14DE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc500 - Science::540 - Chemistry
dc.subject.ddc000 - Computer science, knowledge & systems
dc.titleQuantum Interference-Controlled Conductance Enhancement in Stacked Graphene-like Dimers.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage15697
oaire.citation.issue34
oaire.citation.startPage15689
oaire.citation.volume144
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
oairecerif.author.affiliationDepartement für Chemie, Biochemie und Pharmazie (DCBP)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2022-08-09 21:14:48
unibe.description.ispublishedpub
unibe.eprints.legacyId171783
unibe.journal.abbrevTitleJ AM CHEM SOC
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
jacs.2c05909.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections