Publication:
Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure.

datacite.rightsopen.access
dc.contributor.authorCommowick, Olivier
dc.contributor.authorIstace, Audrey
dc.contributor.authorKain, Michaël
dc.contributor.authorLaurent, Baptiste
dc.contributor.authorLeray, Florent
dc.contributor.authorSimon, Mathieu
dc.contributor.authorPop, Sorina Camarasu
dc.contributor.authorGirard, Pascal
dc.contributor.authorAméli, Roxana
dc.contributor.authorFerré, Jean-Christophe
dc.contributor.authorKerbrat, Anne
dc.contributor.authorTourdias, Thomas
dc.contributor.authorCervenansky, Frédéric
dc.contributor.authorGlatard, Tristan
dc.contributor.authorBeaumont, Jérémy
dc.contributor.authorDoyle, Senan
dc.contributor.authorForbes, Florence
dc.contributor.authorKnight, Jesse
dc.contributor.authorKhademi, April
dc.contributor.authorMahbod, Amirreza
dc.contributor.authorWang, Chunliang
dc.contributor.authorMcKinley, Richard
dc.contributor.authorWagner, Franca
dc.contributor.authorMuschelli, John
dc.contributor.authorSweeney, Elizabeth
dc.contributor.authorRoura, Eloy
dc.contributor.authorLladó, Xavier
dc.contributor.authorSantos, Michel M
dc.contributor.authorSantos, Wellington P
dc.contributor.authorSilva-Filho, Abel G
dc.contributor.authorTomas-Fernandez, Xavier
dc.contributor.authorUrien, Hélène
dc.contributor.authorBloch, Isabelle
dc.contributor.authorValverde, Sergi
dc.contributor.authorCabezas, Mariano
dc.contributor.authorVera-Olmos, Francisco Javier
dc.contributor.authorMalpica, Norberto
dc.contributor.authorGuttmann, Charles
dc.contributor.authorVukusic, Sandra
dc.contributor.authorEdan, Gilles
dc.contributor.authorDojat, Michel
dc.contributor.authorStyner, Martin
dc.contributor.authorWarfield, Simon K
dc.contributor.authorCotton, François
dc.contributor.authorBarillot, Christian
dc.date.accessioned2024-12-13T15:46:41Z
dc.date.available2024-12-13T15:46:41Z
dc.date.issued2018-09-12
dc.description.abstractWe present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.
dc.description.sponsorshipUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
dc.identifier.doi10.7892/boris.120088
dc.identifier.pmid30209345
dc.identifier.publisherDOI10.1038/s41598-018-31911-7
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/193235
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofScientific Reports
dc.relation.issn2045-2322
dc.relation.organizationInstitute of Diagnostic and Interventional Neuroradiology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleObjective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1
oaire.citation.startPage13650
oaire.citation.volume8
oairecerif.author.affiliationUniversitätsinstitut für Diagnostische und Interventionelle Neuroradiologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-23 09:10:38
unibe.description.ispublishedpub
unibe.eprints.legacyId120088
unibe.journal.abbrevTitleSci Rep
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41598-018-31911-7.pdf
Size:
4.38 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections