Publication:
Optimization of Microfluidics for Point-of-Care Blood Sensing.

cris.virtualsource.author-orcid3ffc609d-4653-413a-a80f-2bf6c2b71f47
cris.virtualsource.author-orcida0f00c7b-780d-4398-9754-fe2161b10f0e
datacite.rightsopen.access
dc.contributor.authorTavakolidakhrabadi, Amirmahdi
dc.contributor.authorStark, Matt
dc.contributor.authorBacher, Vera Ulrike
dc.contributor.authorLegros, Myriam
dc.contributor.authorBessire, Cedric
dc.date.accessioned2024-10-26T18:21:32Z
dc.date.available2024-10-26T18:21:32Z
dc.date.issued2024-05-23
dc.description.abstractBlood tests are widely used in modern medicine to diagnose certain illnesses and evaluate the overall health of a patient. To enable testing in resource-limited areas, there has been increasing interest in point-of-care (PoC) testing devices. To process blood samples, liquid mixing with active pumps is usually required, making PoC blood testing expensive and bulky. We explored the possibility of processing approximately 2 μL of whole blood for image flow cytometry using capillary structures that allowed test times of a few minutes without active pumps. Capillary pump structures with five different pillar shapes were simulated using Ansys Fluent to determine which resulted in the fastest whole blood uptake. The simulation results showed a strong influence of the capillary pump pillar shape on the chip filling time. Long and thin structures with a high aspect ratio exhibited faster filling times. Microfluidic chips using the simulated pump design with the most efficient blood uptake were fabricated with polydimethylsiloxane (PDMS) and polyethylene oxide (PEO). The chip filling times were tested with 2 μL of both water and whole blood, resulting in uptake times of 24 s for water and 111 s for blood. The simulated blood plasma results deviated from the experimental filling times by about 35% without accounting for any cell-induced effects. By comparing the flow speed induced by different pump pillar geometries, this study offers insights for the design and optimization of passive microfluidic devices for inhomogenous liquids such as whole blood in sensing applications.
dc.description.sponsorshipUniversitätsklinik für Hämatologie und Hämatologisches Zentrallabor
dc.identifier.doi10.48350/198149
dc.identifier.pmid38920570
dc.identifier.publisherDOI10.3390/bios14060266
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/178440
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofBiosensors
dc.relation.issn2079-6374
dc.relation.organizationDCD5A442C055E17DE0405C82790C4DE2
dc.subjectbiomedical sensors capillary-driven systems computational modeling lab-on-a-chip devices microfluidics microscale fluid transport point-of-care blood sensing
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleOptimization of Microfluidics for Point-of-Care Blood Sensing.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue6
oaire.citation.volume14
oairecerif.author.affiliationUniversitätsklinik für Hämatologie und Hämatologisches Zentrallabor
oairecerif.author.affiliationUniversitätsklinik für Hämatologie und Hämatologisches Zentrallabor
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2024-06-27 08:06:18
unibe.description.ispublishedpub
unibe.eprints.legacyId198149
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
biosensors-14-00266.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections