Maintenance announcement: BORIS Portal will be offline today (December 3rd) from 18:45 to 19:15 for a system update.
 

Publication:
Application possibilities of artificial intelligence in facial vascularized composite allotransplantation-a narrative review.

cris.virtualsource.author-orcidbd2d0cd7-e634-4cc8-bd03-a25a6afaf3e4
datacite.rightsopen.access
dc.contributor.authorKnoedler, Leonard
dc.contributor.authorKnoedler, Samuel
dc.contributor.authorAllam, Omar
dc.contributor.authorRemy, Katya
dc.contributor.authorMiragall, Maximilian
dc.contributor.authorSafi, Ali-Farid
dc.contributor.authorAlfertshofer, Michael
dc.contributor.authorPomahac, Bohdan
dc.contributor.authorKauke-Navarro, Martin
dc.date.accessioned2024-11-24T08:53:16Z
dc.date.available2024-11-24T08:53:16Z
dc.date.issued2023
dc.description.abstractFacial vascularized composite allotransplantation (FVCA) is an emerging field of reconstructive surgery that represents a dogmatic shift in the surgical treatment of patients with severe facial disfigurements. While conventional reconstructive strategies were previously considered the goldstandard for patients with devastating facial trauma, FVCA has demonstrated promising short- and long-term outcomes. Yet, there remain several obstacles that complicate the integration of FVCA procedures into the standard workflow for facial trauma patients. Artificial intelligence (AI) has been shown to provide targeted and resource-effective solutions for persisting clinical challenges in various specialties. However, there is a paucity of studies elucidating the combination of FVCA and AI to overcome such hurdles. Here, we delineate the application possibilities of AI in the field of FVCA and discuss the use of AI technology for FVCA outcome simulation, diagnosis and prediction of rejection episodes, and malignancy screening. This line of research may serve as a fundament for future studies linking these two revolutionary biotechnologies.
dc.description.sponsorshipSpezialklinik für Kiefer-, Gesichts- und Oralchirurgie
dc.identifier.doi10.48350/189624
dc.identifier.pmid38026484
dc.identifier.publisherDOI10.3389/fsurg.2023.1266399
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/190617
dc.language.isoen
dc.publisherFrontiers
dc.relation.ispartofFrontiers in Surgery
dc.relation.issn2296-875X
dc.relation.organizationClinic of Craniomaxillofacial Surgery
dc.subjectAI VCA artificial intelligence deep learning face transplant facial VCA machine learning vascularized composite allotransplantation
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleApplication possibilities of artificial intelligence in facial vascularized composite allotransplantation-a narrative review.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.issue1266399
oaire.citation.startPage1266399
oaire.citation.volume10
oairecerif.author.affiliationSpezialklinik für Kiefer-, Gesichts- und Oralchirurgie
oairecerif.author.affiliation2Universitätsklinik für Schädel-, Kiefer- und Gesichtschirurgie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-12-01 14:40:02
unibe.description.ispublishedpub
unibe.eprints.legacyId189624
unibe.journal.abbrevTitleFront. Surg.
unibe.refereedtrue
unibe.subtype.articlereview

Files

Original bundle
Now showing 1 - 1 of 1
Name:
fsurg-10-1266399.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections