Publication:
PCprophet: a framework for protein complex prediction and differential analysis using proteomic data.

cris.virtualsource.author-orcid13fa48d3-9be6-4feb-84b6-abc3bdb4ff90
datacite.rightsrestricted
dc.contributor.authorFossati, Andrea
dc.contributor.authorLi, Chen
dc.contributor.authorUliana, Federico
dc.contributor.authorWendt, Fabian
dc.contributor.authorFrommelt, Fabian
dc.contributor.authorSykacek, Peter
dc.contributor.authorHeusel, Moritz
dc.contributor.authorHallal, Mahmoud Malek
dc.contributor.authorBludau, Isabell
dc.contributor.authorCapraz, Tümay
dc.contributor.authorXue, Peng
dc.contributor.authorSong, Jiangning
dc.contributor.authorWollscheid, Bernd
dc.contributor.authorPurcell, Anthony W
dc.contributor.authorGstaiger, Matthias
dc.contributor.authorAebersold, Ruedi
dc.date.accessioned2024-09-02T17:27:36Z
dc.date.available2024-09-02T17:27:36Z
dc.date.issued2021-05
dc.description.abstractDespite the availability of methods for analyzing protein complexes, systematic analysis of complexes under multiple conditions remains challenging. Approaches based on biochemical fractionation of intact, native complexes and correlation of protein profiles have shown promise. However, most approaches for interpreting cofractionation datasets to yield complex composition and rearrangements between samples depend considerably on protein-protein interaction inference. We introduce PCprophet, a toolkit built on size exclusion chromatography-sequential window acquisition of all theoretical mass spectrometry (SEC-SWATH-MS) data to predict protein complexes and characterize their changes across experimental conditions. We demonstrate improved performance of PCprophet over state-of-the-art approaches and introduce a Bayesian approach to analyze altered protein-protein interactions across conditions. We provide both command-line and graphical interfaces to support the application of PCprophet to any cofractionation MS dataset, independent of separation or quantitative liquid chromatography-MS workflow, for the detection and quantitative tracking of protein complexes and their physiological dynamics.
dc.description.numberOfPages8
dc.description.sponsorshipDepartment for BioMedical Research, Forschungsgruppe Hämatologie (Erwachsene)
dc.identifier.doi10.48350/155965
dc.identifier.pmid33859439
dc.identifier.publisherDOI10.1038/s41592-021-01107-5
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/41931
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofNature methods
dc.relation.issn1548-7091
dc.relation.organizationDCD5A442C2CBE17DE0405C82790C4DE2
dc.relation.organizationDCD5A442C055E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titlePCprophet: a framework for protein complex prediction and differential analysis using proteomic data.
dc.typearticle
dspace.entity.typePublication
oaire.citation.endPage527
oaire.citation.issue5
oaire.citation.startPage520
oaire.citation.volume18
oairecerif.author.affiliationDepartment for BioMedical Research, Forschungsgruppe Hämatologie (Erwachsene)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2021-04-27 13:23:53
unibe.description.ispublishedpub
unibe.eprints.legacyId155965
unibe.journal.abbrevTitleNAT METHODS
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
s41592-021-01107-5.pdf
Size:
4.03 MB
Format:
Adobe Portable Document Format
License:
publisher
Content:
published

Collections