Publication:
Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning.

cris.virtual.author-orcid0000-0002-3203-2803
cris.virtual.author-orcid0000-0002-9264-5185
cris.virtual.author-orcid0000-0001-6741-3000
cris.virtualsource.author-orcid29c87795-11db-4d36-9673-7fb5dbf170bb
cris.virtualsource.author-orciddf37ba4d-d8a0-4700-b1bb-891cb924e7d3
cris.virtualsource.author-orcid6c84719c-dd7a-4678-aa8a-1b4f99d3856a
cris.virtualsource.author-orcid3c6bcc7e-9565-4d14-be6a-9081c311c6bf
datacite.rightsopen.access
dc.contributor.authorBokhorst, J. M.
dc.contributor.authorBlank, Annika
dc.contributor.authorLugli, Alessandro
dc.contributor.authorZlobec, Inti
dc.contributor.authorDawson, Heather
dc.contributor.authorVieth, M.
dc.contributor.authorRijstenberg, L. L.
dc.contributor.authorBrockmoeller, S.
dc.contributor.authorUrbanowicz, M.
dc.contributor.authorFlejou, J. F.
dc.contributor.authorKirsch, R.
dc.contributor.authorCiompi, F.
dc.contributor.authorvan der Laak, J. A. W. M.
dc.contributor.authorNagtegaal, I. D.
dc.date.accessioned2024-10-28T18:14:16Z
dc.date.available2024-10-28T18:14:16Z
dc.date.issued2020-05
dc.description.abstractTumor budding is a promising and cost-effective biomarker with strong prognostic value in colorectal cancer. However, challenges related to interobserver variability persist. Such variability may be reduced by immunohistochemistry and computer-aided tumor bud selection. Development of computer algorithms for this purpose requires unequivocal examples of individual tumor buds. As such, we undertook a large-scale, international, and digital observer study on individual tumor bud assessment. From a pool of 46 colorectal cancer cases with tumor budding, 3000 tumor bud candidates were selected, largely based on digital image analysis algorithms. For each candidate bud, an image patch (size 256 × 256 µm) was extracted from a pan cytokeratin-stained whole-slide image. Members of an International Tumor Budding Consortium (n = 7) were asked to categorize each candidate as either (1) tumor bud, (2) poorly differentiated cluster, or (3) neither, based on current definitions. Agreement was assessed with Cohen's and Fleiss Kappa statistics. Fleiss Kappa showed moderate overall agreement between observers (0.42 and 0.51), while Cohen's Kappas ranged from 0.25 to 0.63. Complete agreement by all seven observers was present for only 34% of the 3000 tumor bud candidates, while 59% of the candidates were agreed on by at least five of the seven observers. Despite reports of moderate-to-substantial agreement with respect to tumor budding grade, agreement with respect to individual pan cytokeratin-stained tumor buds is moderate at most. A machine learning approach may prove especially useful for a more robust assessment of individual tumor buds.
dc.description.numberOfPages9
dc.description.sponsorshipInstitut für Pathologie
dc.description.sponsorshipInstitut für Pathologie, Klinische Pathologie
dc.identifier.doi10.7892/boris.138364
dc.identifier.pmid31844269
dc.identifier.publisherDOI10.1038/s41379-019-0434-2
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/185681
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.ispartofModern pathology
dc.relation.issn1530-0285
dc.relation.organizationInstitute of Tissue Medicine and Pathology
dc.relation.organizationInstitute of Tissue Medicine and Pathology, Clinical Pathology
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleAssessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage833
oaire.citation.issue5
oaire.citation.startPage825
oaire.citation.volume33
oairecerif.author.affiliationInstitut für Pathologie, Klinische Pathologie
oairecerif.author.affiliationInstitut für Pathologie, Klinische Pathologie
oairecerif.author.affiliationInstitut für Pathologie
oairecerif.author.affiliationInstitut für Pathologie, Klinische Pathologie
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2020-01-28 10:22:02
unibe.description.ispublishedpub
unibe.eprints.legacyId138364
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Bokhorst Mod Pathol 2019.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by/4.0
Content:
published

Collections