• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. The simple 10-item PARC tool to predict childhood asthma - an external validation.
 

The simple 10-item PARC tool to predict childhood asthma - an external validation.

Options
  • Details
BORIS DOI
10.7892/boris.120546
Date of Publication
March 2019
Publication Type
Article
Division/Institute

Institut für Sozial- ...

Institut für Infektio...

Contributor
Pedersen, Eva Sophie Lundeorcid-logo
Institut für Sozial- und Präventivmedizin (ISPM)
Spycher, Benorcid-logo
Institut für Sozial- und Präventivmedizin (ISPM)
de Jong, Carmen Cornelia Maria
Institut für Sozial- und Präventivmedizin (ISPM)
Halbeisen, Florian Samuelorcid-logo
Institut für Sozial- und Präventivmedizin (ISPM)
Ramette, Alban Nicolasorcid-logo
Institut für Infektionskrankheiten
Gaillard, Erol A
Granell, Raquel
Henderson, A John
Kühni, Claudia
Institut für Sozial- und Präventivmedizin (ISPM)
Subject(s)

600 - Technology::610...

300 - Social sciences...

500 - Science::570 - ...

Series
The Journal of allergy and clinical immunology
ISSN or ISBN (if monograph)
1097-6825
Publisher
Elsevier
Language
English
Publisher DOI
10.1016/j.jaip.2018.09.032
PubMed ID
30312804
Uncontrolled Keywords

ALSPAC Asthma Externa...

Description
BACKGROUND

External validation of prediction models is important to assess generalisability to other populations than the one used for model development. The Predicting Asthma Risk in Children (PARC) tool, developed in the Leicestershire Respiratory Cohort (LRC), uses information on preschool respiratory symptoms to predict asthma at school age.

OBJECTIVE

We performed an external validation of PARC using the Avon Longitudinal Study of Parents and Children (ALSPAC).

METHODS

We defined inclusion criteria, prediction score items at baseline and asthma at follow-up in ALSPAC to match those used in LRC using information from parent-reported questionnaires. We assessed performance of PARC by calculating sensitivity, specificity, predictive values, likelihood ratios, area under the curve (AUC), Brier score and Nagelkerke's R-squared. Sensitivity analyses varied inclusion criteria, scoring items and outcomes.

RESULTS

The validation population included 2690 children with preschool respiratory symptoms of which 373 (14%) had asthma at school age. Discriminative performance of PARC was similar in ALSPAC (AUC=0.77, Brier score 0.13) as in LRC (0.78, 0.22). The score cut-off of 4 showed the highest sum of sensitivity (69%) and specificity (76%) and positive and negative likelihood ratios of 2.87 and 0.41, respectively. Changes to inclusion criteria, scoring items or outcome definitions barely altered the prediction performance.

CONCLUSION

Performing equally well in the validation cohort as in the development cohort, PARC is a valid tool for predicting asthma in population based cohorts. Its use in clinical practice is ready to be tested.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/60145
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
Pedersen JAllergyClinImmunolPract 2018_manuscript.pdftextAdobe PDF511.53 KBAttribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0)acceptedOpen
Pedersen_JAllergyClinImmunolPract_2019.pdftextAdobe PDF666.53 KBpublisherpublished restricted
BORIS Portal
Bern Open Repository and Information System
Build: 960e9e [21.08. 13:49]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo