• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species.
 

The papain-like protease determines a virulence trait that varies among members of the SARS-coronavirus species.

Options
  • Details
BORIS DOI
10.7892/boris.127515
Date of Publication
September 24, 2018
Publication Type
Article
Division/Institute

Institut für Virologi...

Contributor
Niemeyer, Daniela
Mösbauer, Kirstin
Klein, Eva M
Sieberg, Andrea
Mettelman, Robert C
Mielech, Anna M
Dijkman, Ronaldorcid-logo
Institut für Virologie und Immunologie (IVI)
Baker, Susan C
Drosten, Christian
Müller, Marcel A
Subject(s)

600 - Technology::630...

Series
PLoS pathogens
ISSN or ISBN (if monograph)
1553-7366
Publisher
Public Library of Science
Language
English
Publisher DOI
10.1371/journal.ppat.1007296
PubMed ID
30248143
Description
SARS-coronavirus (CoV) is a zoonotic agent derived from rhinolophid bats, in which a plethora of SARS-related, conspecific viral lineages exist. Whereas the variability of virulence among reservoir-borne viruses is unknown, it is generally assumed that the emergence of epidemic viruses from animal reservoirs requires human adaptation. To understand the influence of a viral factor in relation to interspecies spillover, we studied the papain-like protease (PLP) of SARS-CoV. This key enzyme drives the early stages of infection as it cleaves the viral polyprotein, deubiquitinates viral and cellular proteins, and antagonizes the interferon (IFN) response. We identified a bat SARS-CoV PLP, which shared 86% amino acid identity with SARS-CoV PLP, and used reverse genetics to insert it into the SARS-CoV genome. The resulting virus replicated like SARS-CoV in Vero cells but was suppressed in IFN competent MA-104 (3.7-fold), Calu-3 (2.6-fold) and human airway epithelial cells (10.3-fold). Using ectopically-expressed PLP variants as well as full SARS-CoV infectious clones chimerized for PLP, we found that a protease-independent, anti-IFN function exists in SARS-CoV, but not in a SARS-related, bat-borne virus. This PLP-mediated anti-IFN difference was seen in primate, human as well as bat cells, thus independent of the host context. The results of this study revealed that coronavirus PLP confers a variable virulence trait among members of the species SARS-CoV, and that a SARS-CoV lineage with virulent PLPs may have pre-existed in the reservoir before onset of the epidemic.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/200454
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
journal.ppat.1007296.pdftextAdobe PDF9.91 MBpublishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo