Publication:
Slow stochastic learning with global inhibition: a biological solution to the binary perceptron problem

cris.virtual.author-orcid0000-0003-3622-0497
cris.virtualsource.author-orcid8365eb36-c1de-4f83-86b5-ce23ba0e33e0
cris.virtualsource.author-orcid28747c04-312f-48bb-bd16-6ab70190bdbe
dc.contributor.authorSenn, Walter
dc.contributor.authorFusi, Stefano
dc.date.accessioned2024-10-15T09:27:20Z
dc.date.available2024-10-15T09:27:20Z
dc.date.issued2004-06-01
dc.description.abstractNetworks of neurons connected by plastic all-or-none synapses tend to quickly forget previously acquired information when new patterns are learned. This problem could be solved for random uncorrelated patterns by randomly selecting a small fraction of synapses to be modified upon each stimulus presentation (slow stochastic learning). Here we show that more complex, but still linearly separable patterns, can be learned by networks with binary excitatory synapses in a finite number of presentations provided that: (1) there is non-vanishing global inhibition, (2) the binary synapses are changed with small enough probability (slow learning) only when the output neuron does not give the desired response (as in the classical perceptron rule) and (3) the neuronal threshold separating the total synaptic inputs corresponding to different classes is small enough.
dc.description.numberOfPages6
dc.description.sponsorshipInstitut für Physiologie
dc.identifier.doi10.48350/177109
dc.identifier.publisherDOI10.1016/j.neucom.2004.01.062
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/120297
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofNeurocomputing
dc.relation.issn0925-2312
dc.relation.organizationDCD5A442BCD8E17DE0405C82790C4DE2
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleSlow stochastic learning with global inhibition: a biological solution to the binary perceptron problem
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage326
oaire.citation.startPage321
oaire.citation.volume58-60
oairecerif.author.affiliationInstitut für Physiologie
oairecerif.author.affiliationInstitut für Physiologie
oairecerif.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S092523120400058X
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2023-01-18 14:18:24
unibe.description.ispublishedpub
unibe.eprints.legacyId177109
unibe.journal.abbrevTitleNEUROCOMPUTING
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
1-s2.0-S092523120400058X-main.pdf
Size:
198.9 KB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections