• LOGIN
    Login with username and password
Repository logo

BORIS Portal

Bern Open Repository and Information System

  • Publications
  • Projects
  • Funding
  • Research Data
  • Organizations
  • Researchers
  • LOGIN
    Login with username and password
Repository logo
Unibern.ch
  1. Home
  2. Publications
  3. Near-real-time Mueller polarimetric image processing for neurosurgical intervention.
 

Near-real-time Mueller polarimetric image processing for neurosurgical intervention.

Options
  • Details
BORIS DOI
10.48350/194558
Date of Publication
June 2024
Publication Type
Article
Division/Institute

Universitätsklinik fü...

Universitätsinstitut ...

Institut für Gewebeme...

Contributor
Moriconi, Stefano
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie (DIN)
Rodriguez Nunez, Omar
Universitätsklinik für Neurochirurgie
Gros, Romaneorcid-logo
Institut für Gewebemedizin und Pathologie
Institut für Gewebemedizin und Pathologie - Immunpathologie 5
Felger, Leonard Alexander
Universitätsklinik für Neurochirurgie
Maragkou, Theoni
Institut für Gewebemedizin und Pathologie
Institut für Gewebemedizin und Pathologie - Klinische Pathologie
Hewer, Ekkehard
Pierangelo, Angelo
Novikova, Tatiana
Schucht, Philippe
Universitätsklinik für Neurochirurgie
McKinley, Richard Iain
Universitätsinstitut für Diagnostische und Interventionelle Neuroradiologie (DIN)
Subject(s)

600 - Technology::610...

500 - Science::570 - ...

Series
International journal of computer assisted radiology and surgery
ISSN or ISBN (if monograph)
1861-6429
Publisher
Springer
Language
English
Publisher DOI
10.1007/s11548-024-03090-6
PubMed ID
38503943
Uncontrolled Keywords

AI Mueller polarimetr...

Description
PURPOSE

Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice.

METHODS

A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities. Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the assumption of pseudo-Gaussian polarimetric acquisition noise.

RESULTS

The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased human brain samples in different conditions. Accuracy and image quality indices showed significant ( ) improvements on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The computational time is reported for the end-to-end processing.

CONCLUSION

The end-to-end image processing achieved real-time performance for a localised field of view ( ). The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.
Handle
https://boris-portal.unibe.ch/handle/20.500.12422/175707
Show full item
File(s)
FileFile TypeFormatSizeLicensePublisher/Copright statementContent
s11548-024-03090-6.pdftextAdobe PDF6.02 MBAttribution (CC BY 4.0)publishedOpen
BORIS Portal
Bern Open Repository and Information System
Build: 27ad28 [15.10. 15:21]
Explore
  • Projects
  • Funding
  • Publications
  • Research Data
  • Organizations
  • Researchers
More
  • About BORIS Portal
  • Send Feedback
  • Cookie settings
  • Service Policy
Follow us on
  • Mastodon
  • YouTube
  • LinkedIn
UniBe logo