Publication:
A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface

cris.virtual.author-orcid0000-0002-8040-2696
cris.virtual.author-orcid0000-0003-0487-8606
cris.virtual.author-orcid0000-0002-4712-7047
cris.virtualsource.author-orcid4712b3c1-b52f-40b8-b1e2-4dcef7899324
cris.virtualsource.author-orcida4de7b12-4bdd-43c6-9f82-62133fb81b69
cris.virtualsource.author-orcid8e8a2467-96b0-4987-8997-57604a4b0630
dc.contributor.authorOvesy, Marzieh
dc.contributor.authorVoumard, Benjamin
dc.contributor.authorZysset, Philippe
dc.date.accessioned2024-10-25T15:07:40Z
dc.date.available2024-10-25T15:07:40Z
dc.date.issued2018-10
dc.description.abstractStability of an implant is defined by its ability to undergo physiological loading–unloading cycles without showing excessive tissue damage and micromotions at the interface. Distinction is usually made between the immediate primary stability and the long-term, secondary stability resulting from the biological healing process. The aim of this research is to numerically investigate the effect of initial implantation press-fit, bone yielding, densification and friction at the interface on the primary stability of a simple bone–implant system subjected to loading–unloading cycles. In order to achieve this goal, human trabecular bone was modeled as a continuous, elasto-plastic tissue with damage and densification, which material constants depend on bone volume fraction and fabric. Implantation press-fit related damage in the bone was simulated by expanding the drilled hole to the outer contour of the implant. The bone–implant interface was then modeled with unilateral contact with friction. The implant was modeled as a rigid body and was subjected to increasing off-axis loading cycles. This modeling approach is able to capture the experimentally observed primary stability in terms of initial stiffness, ultimate force and progression of damage. In addition, it is able to quantify the micromotions around the implant relevant for bone healing and osseointegration. In conclusion, the computationally efficient modeling approach used in this study provides a realistic structural response of the bone–implant interface and represents a powerful tool to explore implant design, implantation press-fit and the resulting risk of implant failure under physiological loading.
dc.description.numberOfPages10
dc.description.sponsorshipInstitut für chirurgische Technologien und Biomechanik (ISTB)
dc.identifier.doi10.7892/boris.118251
dc.identifier.pmid29858707
dc.identifier.publisherDOI10.1007/s10237-018-1038-3
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/163169
dc.language.isoen
dc.publisherSpringer-Verlag
dc.relation.ispartofBiomechanics and Modeling in Mechanobiology
dc.relation.issn1617-7940
dc.relation.organizationDCD5A442BCD5E17DE0405C82790C4DE2
dc.relation.schoolDCD5A442C27BE17DE0405C82790C4DE2
dc.subject.ddc500 - Science::570 - Life sciences; biology
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.subject.ddc600 - Technology::620 - Engineering
dc.titleA nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
oaire.citation.endPage1480
oaire.citation.issue5
oaire.citation.startPage1471
oaire.citation.volume17
oairecerif.author.affiliationInstitut für chirurgische Technologien und Biomechanik (ISTB)
oairecerif.author.affiliationInstitut für chirurgische Technologien und Biomechanik (ISTB)
oairecerif.author.affiliationInstitut für chirurgische Technologien und Biomechanik (ISTB)
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.embargoChanged2022-06-02 22:25:02
unibe.date.licenseChanged2019-10-22 23:26:20
unibe.description.ispublishedpub
unibe.eprints.legacyId118251
unibe.journal.abbrevTitleBiomech Model Mechanobiol
unibe.refereedTRUE
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 1 of 1
Name:
Ovesy2018_Article_ANonlinearHomogenizedFiniteEle.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
published

Collections