Publication:
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images.

datacite.rightsopen.access
dc.contributor.authorSaltz, Joel
dc.contributor.authorGupta, Rajarsi
dc.contributor.authorHou, Le
dc.contributor.authorKurc, Tahsin
dc.contributor.authorSingh, Pankaj
dc.contributor.authorNguyen, Vu
dc.contributor.authorSamaras, Dimitris
dc.contributor.authorShroyer, Kenneth R
dc.contributor.authorZhao, Tianhao
dc.contributor.authorBatiste, Rebecca
dc.contributor.authorVan Arnam, John
dc.date.accessioned2024-10-08T15:22:41Z
dc.date.available2024-10-08T15:22:41Z
dc.date.issued2018-04-03
dc.description.abstractBeyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment.
dc.description.noteMark Rubin (Direktor DBMR) ist Collaborator in dieser Publikation.
dc.description.numberOfPages13
dc.identifier.doi10.7892/boris.126388
dc.identifier.pmid29617659
dc.identifier.publisherDOI10.1016/j.celrep.2018.03.086
dc.identifier.urihttps://boris-portal.unibe.ch/handle/20.500.12422/64172
dc.language.isoen
dc.publisherCell Press
dc.relation.ispartofCell reports
dc.relation.issn2211-1247
dc.relation.organization4E745CF42DBF6EC0E053960C5C82F4E9
dc.subjectartificial intelligence bioinformatics computer vision deep learning digital pathology immuno-oncology lymphocytes machine learning tumor microenvironment tumor-infiltrating lymphocytes
dc.subject.ddc600 - Technology::610 - Medicine & health
dc.titleSpatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images.
dc.typearticle
dspace.entity.typePublication
dspace.file.typetext
dspace.file.typetext
oaire.citation.endPage193.e7
oaire.citation.issue1
oaire.citation.startPage181
oaire.citation.volume23
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.contributor.rolecreator
unibe.date.licenseChanged2019-10-24 09:00:11
unibe.description.ispublishedpub
unibe.eprints.legacyId126388
unibe.journal.abbrevTitleCell Reports
unibe.refereedtrue
unibe.subtype.articlejournal

Files

Original bundle
Now showing 1 - 2 of 2
Name:
nihms958989.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
publisher
Content:
accepted
Name:
1-s2.0-S2211124718304479-main.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
File Type:
text
License:
https://creativecommons.org/licenses/by-nc-nd/4.0
Content:
published

Collections